【技巧】十大深度学习技巧和经验总结
✅作者简介:在读博士,伪程序媛,人工智能领域学习者,深耕机器学习,交叉学科实践者,周更前沿文章解读,提供科研小工具,分享科研经验,欢迎交流!
📌个人主页: https://blog.csdn.net/allein_STR?spm=1011.2559.3001.5343
💯特色专栏:深度学习和WRF,提供人工智能方方面面小姿势,从基础到进阶,教程全面。
📞联系博主:博文留言+主页底部联系方式+WeChat code: Allein_STR
📙本文内容:介绍称霸Kaggle的十大深度学习技巧和经验总结
1. 使用Fast.ai库
from fast.ai import *
fast.ai库不仅是一个让新手快速实现深度学习的工具包,而且是当前最佳实践的强大而方便的来源。每次fast.ai团队(以及他们的人工智能研究人员和合作者网络)发现一篇特别有趣的论文,他们就会在各种数据集上进行测试,并研究如何对其进行调整。如果他们成功了,它就会在图书馆中实施,用户可以快速访问该技术。
其结果是一个强大的工具箱,包括快速访问当前的最佳实践,如重新启动的随机梯度下降、差异化学习率和测试时间增强(更不用说更多)。
下面将介绍这些技术,并展示如何使用fast.ai库快速实现它们。
该库建立在PyTorch的基础上,你可以很流畅地使用它们。
Fast.ai库地址:
https://github.com/fastai/fastai
2.使用多个而不是单一学习率
差分学习率(Differential Learning rates)意味着在训练时变换网络层比提高网络深度更重要。
基于已有模型来训练深度学习网络,这是一种被验证过很可靠的方法,可以在计算机视觉任务中得到更好的效果。
大部分已有网络(如Resnet、VGG和Inception等)都是在ImageNet数据集训练的,因此我们要根据所用数据集与ImageNet图像的相似性,来适当改变网络权重。
在修改这些权重时,我们通常要对模型的最后几层进行修改,因为这些层被用于检测基本特征(如边缘和轮廓),不同数据集有着不同基本特征。
因此,首先,要用fast ai库获得一个预训练的模型,代码如下。
from fastai.conv_learner import *
# import library for creating learning object for convolutional #networks
model = VVG16()
# assign model to resnet, vgg, or even your own custom model
PATH = './folder_containing_images'
data = ImageClassifierData.from_paths(PATH)
# create fast ai data object, in this method we use from_paths where
# inside PATH each image class is separated into different folders
learn = ConvLearner.pretrained(model, data, precompute=True)
# create a learn object to quickly utilise state of the art
# techniques from the fast ai library
创建学习对象之后(learn object),通过快速冻结前面网络层并微调后面网络层来解决问题:
learn.freeze()
# freeze layers up to the last one, so weights will not be updated.
learning_rate = 0.1
learn.fit(learning_rate, epochs=3)
# train only the last layer for a few epochs
当后面网络层产生了良好效果,我们会应用差分学习率来改变前面网络层。在实际中,一般将学习率的缩小倍数设置为10倍:
learn.unfreeze()
# set requires_grads to be True for all layers, so they can be updated
learning_rate = [0.001, 0.01, 0.1]
# learning rate is set so that deepest third of layers have a rate of 0.001, # middle layers have a rate of 0.01, and final layers 0.1.
learn.fit(learning_rate, epochs=3)
# train model for three epoch with using differential learning rates
3. 如何找到合适的学习率
学习率是神经网络训练中最重要的超参数,没有之一,但之前在实际应用中很难为神经网络选择最佳的学习率。
Leslie Smith的一篇周期性学习率论文发现了答案,这是一个相对不知名的发现,直到它被Fast.ai课程推广后才逐渐被广泛使用。
这篇论文是:
Cyclical Learning Rates for Training Neural Networks
https://arxiv.org/abs/1506.01186
在这种方法中,我们尝试使用较低学习率来训练神经网络,但是在每个批次中以指数形式增加,相应代码如下:
learn.lr_find()
# run on learn object where learning rate is increased exponentially
learn.sched.plot_lr()
# plot graph of learning rate against iterations
同时,记录每个学习率值的损失。然后,我们将损失与学习率作对比。
learn.sched.plot()
# plots the loss against the learning rate
最佳的学习率是通过找到学习率最高而损失仍在下降的数值来确定的,在上述案例中,关于这个数值将是0.01。
4. 余弦退火
在采用批次随机梯度下降算法时,神经网络应该越来越接近Loss值的全局最小值。当它逐渐接近这个最小值时,学习率应该变得更小来使得模型不会超调且尽可能接近这一点。
余弦退火(Cosine annealing)利用余弦函数来降低学习率,进而解决这个问题,如下图所示:
观察上图,我们看到,随着我们增加x,余弦值起初缓慢下降,然后更快,然后又稍慢。这种下降模式与学习率配合得很好,以一种计算效率高的方式产生了很好的结果。
learn.fit(0.1, 1)
# Calling learn fit automatically takes advantage of cosine annealing
我们可以用Fast.ai库中的learn.fit()函数,来快速实现这个算法,在整个周期中不断降低学习率,如下图所示
同时,在这种方法基础上,我们可以进一步引入重启机制。
5. 带重启的SGD算法
在训练时,梯度下降算法可能陷入局部最小值,而不是全局最小值。
梯度下降算法可以通过突然提高学习率,来“跳出”局部最小值并找到通向全局最小值的路径。这种方式称为带重启的随机梯度下降方法(stochastic gradient descent with restarts, SGDR),这个方法在Loshchilov和Hutter的ICLR论文中展示出了很好的效果。
这篇论文是:
SGDR: Stochastic Gradient Descent with Warm Restarts
https://arxiv.org/abs/1608.03983
用Fast.ai库可以快速导入SGDR算法。当调用learn.fit(learning_rate, epochs)函数时,学习率在每个周期开始时重置为参数输入时的初始值,然后像上面余弦退火部分描述的那样,逐渐减小。
每当学习率下降到最小点,在上图中为每100次迭代,我们称为一个循环。
cycle_len = 1
# decide how many epochs it takes for the learning rate to fall to
# its minimum point. In this case, 1 epoch
cycle_mult=2
# at the end of each cycle, multiply the cycle_len value by 2
learn.fit(0.1, 3, cycle_len=2, cycle_mult=2)
# in this case there will be three restarts. The first time with
# cycle_len of 1, so it will take 1 epoch to complete the cycle.
# cycle_mult=2 so the next cycle with have a length of two epochs,
# and the next four.
利用这些参数,和使用差分学习率,这些技巧是Fast.ai用户在图像分类问题上取得良好效果的关键。
Fast.ai论坛有个帖子专门讨论Cycle_mult和cycle_len函数,地址在这里:
http://forums.fast.ai/t/understanding-cycle-len-and-cycle-mult/9413/8
更多关于学习率的详细内容可参考这个Fast.ai课程:
http://course.fast.ai/lessons/lesson2.html
6. 拟人化你的激活函数
Softmax只喜欢选择一样东西;
Sigmoid想知道你在[-1, 1]区间上的位置,并不关心你超出这些值后的增加量;
Relu是一名俱乐部保镖,要将负数拒之门外。
……
以这种思路对待激活函数,看起来很愚蠢,但是安排一个角色后能确保把他们用到正确任务中。
正如fast.ai创始人Jeremy Howard指出,不少学术论文中也把Softmax函数用在多分类问题中。在DL学习过程中,我也看到它在论文和博客中多次使用不当。
7. 迁移学习在NLP问题中非常有效
正如预训练好的模型在计算机视觉任务中很有效一样,已有研究表明,自然语言处理(NLP)模型也可以从这种方法中受益。
在Fast.ai第4课中,Jeremy Howard用迁移学习方法建立了一个模型,来判断IMDB上的电影评论是积极的还是消极的。
这种方法的效果立竿见影,他所达到的准确率超过了Salesforce论文中展示的所有先前模型:
https://einstein.ai/research/learned-in-translation-contextualized-word-vectors。
这个模型的关键在于先训练模型来获得对语言的一些理解,然后再使用这种预训练好的模型作为新模型的一部分来分析情绪。
为了创建第一个模型,我们训练了一个循环神经网络(RNN)来预测文本序列中的下个单词,这称为语言建模。当训练后网络的准确率达到一定值,它对每个单词的编码模式就会传递给用于情感分析的新模型。
在上面的例子中,我们看到这个语言模型与另一个模型集成后用于情感分析,但是这种方法可以应用到其他任何NLP任务中,包括翻译和数据提取。
而且,计算机视觉中的一些技巧,也同样适用于此,如上面提到的冻结网络层和使用差分学习率,在这里也能取得更好的效果。
这种方法在NLP任务上的使用涉及很多细节,这里就不贴出代码了,可访问相应课程和代码。
课程:
http://course.fast.ai/lessons/lesson4.html
代码:
https://github.com/fastai/fastai/blob/master/courses/dl1/lesson4-imdb.ipynb
8. 深度学习可以挑战ML处理结构化数据的能力
Fast.ai课程中展示了深度学习在处理结构化数据上的突出表现,且无需借助特征工程以及领域内的特定知识。
这个库充分利用了PyTorch中embedding函数,允许将分类变量快速转换为嵌入矩阵。
他们展示出的技术比较简单直接,只需将分类变量转换为数字,然后为每个值分配嵌入向量:
在这类任务上,传统做法是创建虚拟变量,即进行一次热编码。与之相比,这种方式的优点是用四个数值代替一个数值来描述每一天,因此可获得更高的数据维度和更丰富的关系。
这种方法在Rossman Kaggle比赛中获得第三名,惜败于两位利用专业知识来创建许多额外特征的领域专家。
相关课程:
http://course.fast.ai/lessons/lesson4.html
代码:
https://github.com/fastai/fastai/blob/master/courses/dl1/lesson3-rossman.ipynb
这种用深度学习来减少对特征工程依赖的思路,也被Pinterest证实过。他也提到过,他们正努力通过深度学习模型,期望用更少的工作量来获得更好的效果。
9. 更多内置函数:Dropout层、尺寸设置、TTA
4月30日,Fast.ai团队在斯坦福大学举办的DAWNBench竞赛中,赢得了基于Imagenet和CIFAR10的分类任务。在Jeremy的夺冠总结中,他将这次成功归功于fast.ai库中的一些额外函数。
其中之一是Dropout层,由Geoffrey Hinton两年前在一篇开创性的论文中提出。它最初很受欢迎,但在最近的计算机视觉论文中似乎有所忽略。这篇论文是:
Dropout: A Simple Way to Prevent Neural Networks from Overfitting:
https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf
然而,PyTorch库使它的实现变得很简单,用Fast.ai库加载它就更容易了。
Dropout函数能减弱过拟合效应,因此要在CIFAR-10这样一个相对较小的数据集上取胜,这点很重要。在创建learn对象时,Fast.ai库会自动加入dropout函数,同时可使用ps变量来修改参数,如下所示:
learn = ConvLearner.pretrained(model, data, ps=0.5, precompute=True)
# creates a dropout of 0.5 (i.e. half the activations) on test dataset.
# This is automatically turned off for the validation set
有一种很简单有效的方法,经常用来处理过拟合效应和提高准确性,它就是训练小尺寸图像,然后增大尺寸并再次训练相同模型。
# create a data object with images of sz * sz pixels
def get_data(sz):
tmfs = tfms_from_model(model, sz)
# tells what size images should be, additional transformations such
# image flips and zooms can easily be added here too
data = ImageClassifierData.from_paths(PATH, tfms=tfms)
# creates fastai data object of create size
return data
learn.set_data(get_data(299))
# changes the data in the learn object to be images of size 299
# without changing the model.
learn.fit(0.1, 3)
# train for a few epochs on larger versions of images, avoiding overfitting
还有一种先进技巧,可将准确率提高若干个百分点,它就是测试时增强(test time augmentation, TTA)。这里会为原始图像造出多个不同版本,包括不同区域裁剪和更改缩放程度等,并将它们输入到模型中;然后对多个版本进行计算得到平均输出,作为图像的最终输出分数,可调用learn.TTA()来使用该算法。
preds, target = learn.TTA()
这种技术很有效,因为原始图像显示的区域可能会缺少一些重要特征,在模型中输入图像的多个版本并取平均值,能解决上述问题
10.创新是关键
在DAWNBench比赛中,Fast.ai团队提出的模型不仅速度最快,而且计算成本低。要明白,要构建成功的DL应用,不只是一个利用大量GPU资源的计算任务,而应该是一个需要创造力、直觉和创新力的问题。
本文中讨论的一些突破,包括Dropout层、余弦退火和带重启的SGD方法等,实际上是研究者针对一些问题想到的不同解决方式。与简单地增大训练数据集相比,能更好地提升准确率。
硅谷的很多大公司有大量GPU资源,但是,不要认为他们的先进效果遥不可及,你也能靠创新力提出一些新思路,来挑战效果排行榜。
事实上,有时计算力的局限也是一种机会,因为需求是创新的动力源泉。
END
本篇到这里就结束了。想学习更多Python、人工智能、交叉学科相关知识,点击关注博主,带你从基础到进阶。若有需要提供科研指导、代码支持,资源获取或者付费咨询的伙伴们,可以添加博主个人联系方式!
码字不易,希望大家可以点赞+收藏+关注+评论!
原文:https://blog.floydhub.com/ten-techniques-from-fast-ai/
声明:部分内容来源于网络,仅供读者学术交流之目的。文章版权归原作者所有。如有不妥,请联系删除。