当前位置: 首页 > article >正文

读千脑智能笔记05_千脑智能理论

1.       现有的新皮质理论

1.1.         最普遍的看法是新皮质就像一个流程图

1.2.         特征层次理论

1.2.1.           该理论最大的弊端在于认为视觉是个静止的过程,就像拍一张照片一样,但事实并非如此

1.2.1.1.            眼睛每秒会快速转动约三次(扫视)

1.2.2.           会忽略视觉动态的原因

1.2.2.1.            我们有时不移动眼睛就能识别出图像,如在显示屏上短暂闪过的图片,但这只是一个特例,并不普遍
1.2.2.2.            视觉是主动的感觉-运动过程,不是静态过程
1.2.2.3.            对于触觉和听觉,感觉-运动过程的重要作用体现得更为明显
1.2.2.4.            听觉也是一个动态过程
1.2.2.4.1.             不仅听觉内容(如口语会话)是由随时间变化的声音定义的,当我们聆听时,我们也会移动头部主动完善所听到的内容

1.2.3.           第一和第二视觉区(V1和V2)是人类新皮质中最大的区域

1.2.3.1.            在大脑中所占面积比其他可识别完整物体的视觉区要大得多

1.2.4.           当眼睛从一个注视点扫视到另一个注视点时,V1区和V2区的一些神经元的某些行为引起了研究人员的注意

1.2.5.           视网膜的中央比边缘有更多的光感受器

1.2.5.1.            真正的视觉输入就好比由高度变形的、不完整的图块铺成的毯子

1.2.6.           “绑定问题”(binding problem)或“感官融合问题”(sensor-fusion

problem)

1.2.6.1.            来自不同感官的信息分散在新皮质的各处,且伴有各种各样的变形,这些信息是怎样融为我们所体验到的单一且完整的知觉的?

1.2.7.           得到了广泛应用的原因

1.2.7.1.            该理论与大量的观察数据相符,尤其是很久以前收集的数据
1.2.7.2.            该理论存在的问题随着时间的推进慢慢积累,这导致人们很容易将一些新出现的问题当作小问题,从而忽略
1.2.7.3.            这是我们迄今为止所建立起来的最好的理论,既然没有更好的理论可以替代它,那就只能使用它
1.2.7.4.            该理论并非完全错误,只不过我们需要进行大量修正

2.       参考系下的新皮质理论

2.1.         学习物体的模型并不需要皮质区的层次结构

2.2.         你所学习的模型通常是临时的

2.2.1.           新皮质永远不会停止学习模型

2.3.         每根皮质柱都是一个感觉-运动系统,每根皮质柱都会学习成百上千个物体模型,这些模型都是基于参考系的

2.3.1.           单根皮质柱能够学习多少物体是有限制的

2.3.2.           皮质柱不是多余的,也不是彼此的副本

2.3.3.           皮质柱会进行“投票”,即感知是皮质柱通过投票达成的共识

2.3.3.1.            只有特定的某些细胞进行投票才有意义
2.3.3.2.            皮质柱中的大多数细胞无法表征可以投票的那类信息

2.3.4.           皮质柱中的大多数连接在各层之间上下移动,主要停留在皮质柱的边界内

2.3.5.           皮质柱通常具有不确定性,在这种情况下,它的神经元会同时发送多种可能性

2.3.5.1.            最常见的猜测会胜过最不常见的猜测,直到整个网络确定一个答案

2.4.         大脑中的知识是分布式存储的

2.4.1.           所有知识都不会只存储在一个地方,如存储在一个细胞或皮质柱中,也没有像全息图那样在任一地方存储所有东西

2.5.         关于任何特定物体的知识都分布在成千上万个互补的模型中

2.6.         当知识和行动广泛分布在许多但不是太多的元素中时,复杂系统的工作效果就能达到最好

2.7.         神经元从不依赖单个突触,相反,它可能需要30个突触来识别一个模式

2.7.1.           即使其中10个突触失效,神经元仍然能够识别这种模式

2.8.         大多数时候,我们完全不会意识到我们的眼睛在转动

2.8.1.           触觉也会产生类似的感知稳定性

2.9.         人的感官部分受阻是很常见的

2.10.     大脑可以关注视觉场景中较小或较大的部分

2.10.1.      涉及大脑中被称为丘脑的部分,丘脑与新皮质的所有区域紧密相连

2.10.2.      每当你注意一个不同的物体时,你的大脑会确定该物体相对于之前关注的物体的位置。这是一个自发的过程,是注意力集中过程的一部分

2.11.     芒卡斯尔1998年出版的《感知神经科学:大脑皮质》(Perceptual Neuroscience:The Cerebra Cortex)

3.       千脑智能理论中的层次结构

3.1.         千脑智能理论认为,新皮质区的层次结构并不是绝对必要的

3.2.         新皮质的解剖结构表明,两种类型的连接都存在

3.3.         在层次之间传递的是完整的物体,而不是特征

3.4.         千脑智能理论本质上是一种感觉-运动理论

3.5.         灵长目动物的V1区和V2区相对较大,而小鼠的V1区特别大,这在千脑智能理论看来是有意义的,因为每一根皮质柱都可以识别完整的物体

3.6.         千脑智能理论认为,我们的大部分视觉行为都发生在V1区和V2区

3.6.1.           主要和次要触觉相关区域也比较大


http://www.kler.cn/a/229174.html

相关文章:

  • SUN的J2EE与微软的DNA
  • Golang学习笔记_26——通道
  • Unity-Mirror网络框架-从入门到精通之RigidbodyPhysics示例
  • 内存与缓存:保姆级图文详解
  • Web3D交互展示:重塑产品展示的新维度
  • 浅谈云计算16 | 存储虚拟化技术
  • 算法——二分查找算法
  • day38WEB攻防-通用漏洞XSS跨站绕过修复http_onlyCSP标签符号
  • 深入探索 MySQL 8 中的 JSON 类型:功能与应用
  • 当前小程序跳转另一个小程序
  • 【高质量精品】2024美赛B题22页word版高质量半成品论文+多版保奖思路+数据+前四问思路代码等(后续会更新)
  • 数据类型完整版
  • Day4.
  • Linux【docker 设置阿里源】
  • 杨中科 ASP.NETCORE 高级14 SignalR
  • C++类和对象入门(三)
  • error getting ip from ipam: operation get is not supported on blockkey
  • 88.网游逆向分析与插件开发-物品使用-物品使用策略管理UI的设计
  • 01. k210-命令行环境搭建(ubuntu环境)
  • 自学Java的第二十天
  • 使用Dubbo实现微服务之间的高效通信
  • 肿瘤免疫分型
  • 06-Java适配器模式 ( Adapter Pattern )
  • 2024年Java架构篇之数据结构与算法面试题
  • WINDOWS搭建NFS服务器
  • Redis面试题42