当前位置: 首页 > article >正文

预测模型:MATLAB线性回归

1. 线性回归模型的基本原理

  线性回归是统计学中用来预测连续变量之间关系的一种方法。它假设变量之间存在线性关系,可以通过一个或多个自变量(预测变量)来预测因变量(响应变量)的值。基本的线性回归模型可以表示为:
y = β 0 + β 1 x 1 + β 2 x 2 + . . . + β n x n + ϵ y = \beta_0 + \beta_1x_1 + \beta_2x_2 + ... + \beta_nx_n + \epsilon y=β0+β1x1+β2x2+...+βnxn+ϵ
其中, y y y是因变量, x 1 , x 2 , . . . , x n x_1, x_2, ..., x_n x1,x2,...,xn是自变量, β 0 \beta_0 β0是截距项, β 1 , β 2 , . . . , β n \beta_1, \beta_2, ..., \beta_n β1,β2,...,βn是回归系数, ϵ \epsilon ϵ是误差项。

2. MATLAB中线性回归的求解

  MATLAB提供了多种工具和函数来进行线性回归分析,包括fitlm函数用于创建线性回归模型,以及regress函数等。fitlm提供了一个方便的接口来拟合线性模型,自动计算回归系数,并提供了估计的统计信息。

3. 实例分析

  假设我们有一组数据,包含了一家公司的广告支出和相应的销售额。我们想要建立一个模型,预测根据广告支出预测销售额。

数据:

广告支出(万)销售额(万)
1.258
2.175
0.949
1.872
1.565
2.590

使用MATLAB进行线性回归分析:

clc,clear
% 加载数据
X = [1.2, 2.1, 0.9, 1.8, 1.5 , 2.5]; % 广告支出
Y = [58, 75, 49, 72, 65, 90]; % 销售额

% 线性回归分析
mdl = fitlm(X, Y);

disp(mdl)

% 绘制数据点
figure; % 创建一个新的图形窗口
scatter(X, Y, 'filled'); % 绘制散点图
hold on; % 保持图形,以便在同一图形上添加回归线

% 计算回归线
b = mdl.Coefficients.Estimate; % 获取回归系数
refX = min(X):0.01:max(X); % 生成一个参考X值的向量,用于绘制回归线
refY = b(1) + b(2)*refX; % 计算对应的Y值

% 绘制回归线
plot(refX, refY, 'r', 'LineWidth', 2); % 绘制红色的回归线

% 标题和轴标签
title('广告支出与销售额的线性回归分析');
xlabel('广告支出(万)');
ylabel('销售额(万)');

% 显示图例
legend('观测数据', '回归线', 'Location', 'best');

hold off; % 释放图形

4. 求解结果

  在代码中,fitlm函数会输出一个线性模型对象,其中包含了模型的详细统计信息,如回归系数的估计值、 R 2 R^2 R2值(解释变量对响应变量的解释程度)、p值等,可以用来评估模型的质量和预测能力。

具体结果如下:

线性回归图如下:

通过线性回归模型,我们可以预测在不同的广告支出下可能获得的销售额,这对于资源分配和营销策略的制定极为重要。线性回归模型是最简单的预测模型之一,后面还会介绍其他的回归预测模型。


http://www.kler.cn/a/231884.html

相关文章:

  • Qt —— 控件属性
  • 构建高效稳定的网络环境
  • 微软Win10 RP 19045.5435(KB5050081)预览版发布!
  • C#性能优化技巧:利用Lazy<T>实现集合元素的延迟加载
  • 【经验分享】ARM Linux-RT内核实时系统性能评估工具
  • 【JVM-9】Java性能调优利器:jmap工具使用指南与应用案例
  • 【芯片设计- RTL 数字逻辑设计入门 11.1 -- 状态机实现 移位运算与乘法 1】
  • 8.0 Zookeeper 四字命令教程详解
  • ruoyi-nbcio中xxl-job的安装与使用
  • C# async/await的使用
  • Java微服务学习Day1
  • facebook广告投流有几种方式
  • XSS攻击 - 不要再硬背了
  • svg基础(五)滤镜-高斯模糊,混合模式,偏移,颜色变换
  • [C/C++] -- JSON for Modern C++
  • Centos 内存和硬盘占用情况以及top作用
  • JVM 性能调优 - 参数基础(2)
  • Java实现批量视频抽帧2.0
  • 前端架构: 脚手架的开发流程和常用框架
  • 基于“python+”潮汐、风驱动循环、风暴潮等海洋水动力模拟实践技术
  • macOS系统下彻底删除应用程序和其数据、配置等
  • 《Git 简易速速上手小册》第1章:Git 基础(2024 最新版)
  • Python进阶----在线翻译器(Python3的百度翻译爬虫)
  • get通过发送Body传参-工具类
  • Go 语言中如何大小端字节序?int 转 byte 是如何进行的?
  • 小白水平理解面试经典题目LeetCode 21. Merge Two Sorted Lists【Linked List类】