当前位置: 首页 > article >正文

Linux 36.2@Jetson Orin Nano之Hello AI World!

Linux 36.2@Jetson Orin Nano之Hello AI World!

  • 1. 源由
  • 2. Hello AI World!
  • 3. 步骤
    • 3.1 准备阶段
    • 3.2 获取代码
    • 3.3 Python环境
    • 3.4 重点环节
    • 3.5 软件配置
    • 3.6 PyTorch安装
    • 3.7 编译链接
    • 3.8 安装更新
  • 4. 测试
    • 4.1 video-viewer
    • 4.2 detectnet
    • 4.3 演示命令
  • 5. 参考资料

1. 源由

AI到底有多神奇???

记得神奇的年代有神奇的语言:“人有多大胆,地有多大产;不怕想不到,就怕做不到。“

暂且不去讨论这句话的背景,深意,以及各种解说。在这里,抓一个发散思维的要点,要能想,要感想!

好了,废话不多说,既然我们有了《Linux 36.2@Jetson Orin Nano基础环境构建》,就来看看用这些AI技术可以有些什么好玩的!

2. Hello AI World!

大体所有的新事物都会有个类似“Hello AI World”的介绍,让更加贴心的让我们快速接触和理解新事物。

  • Linux应用程序之Helloworld入门
  • ubuntu22.04@laptop OpenCV Get Started: 000_hello_opencv

这里也有一个Jetson AI的Hello AI World!。

大致有三种方法:

  1. Setting up Jetson with JetPack
  2. Running the Docker Container
  3. Building the Project from Source

通常来说,最难的就是从源代码来构建。因为程序对于环境的依赖关系,不是三言两语能够简单概括的。

3. 步骤

注:长城防火墙永远是技术的一种疼。遇到麻烦,请大家参考:Github操作网络异常笔记。

3.1 准备阶段

git用来获取最新github上的代码;而cmake主要用来做编译、链接的。

$ sudo apt-get update
$ sudo apt-get install git cmake

3.2 获取代码

获取最新的代码,通常是一个好的方法。不过也未必,最新不等于最好用。

不过我们的习惯是“不买合适的,不买最好的,就买最贵的;不用好用的,就用最新的。”

$ git clone https://github.com/dusty-nv/jetson-inference
$ cd jetson-inference
$ git submodule update --init

3.3 Python环境

Python在AI程序应用上是非常便捷的方法,当然讲效率那就去用C++。这里都Hello World,谁知道有没有Python示例代码。

$ sudo apt-get install libpython3-dev python3-numpy

3.4 重点环节

这里为什么说是重点,因为按照指南做,死活会出现各种编译、链接问题。经过笔者的牛刀小试,已经给各位解决了问题。

以下这些是Hello World必备的编译链接环境:

$ sudo apt-get install nvidia-cuda-dev tensorrt-dev nvidia-jetpack

3.5 软件配置

注:要按照笔者的方式进行CUDA_TOOLKIT_ROOT宏定义,切记!

$ cd jetson-inference    # omit if working directory is already jetson-inference/ from above
$ mkdir build
$ cd build
$ cmake -D CUDA_TOOLKIT_ROOT=/usr/local/cuda ..

3.6 PyTorch安装

注:这个步骤好像并非必须,笔者就没有做。也许是用到的这个demo用不到吧。

$ cd jetson-inference/build
$ ./install-pytorch.sh

3.7 编译链接

$ cd jetson-inference/build          # omit if working directory is already build/ from above
$ make -j$(nproc)  # 多核编译,加快速度

3.8 安装更新

注:在没有完全搞清楚软件包安装路径前,不建议安装。其实在build目录下也可以用。

$ sudo make install
$ sudo ldconfig

编译好的应用程序都在aarch64下。

jetson-inference$ tree build/ -L 1
build/
├── aarch64
├── CMakeCache.txt
├── CMakeFiles
├── cmake_install.cmake
├── docs
├── examples
├── install-pytorch.rc
├── install-pytorch.sh
├── Makefile
├── python
├── tools
├── torch-2.1.0-cp310-cp310-linux_aarch64.whl
├── torchvision-310
└── utils

8 directories, 6 files

4. 测试

Jetson Orin Nano的板子用在AI上,最好的应用就是视频图像分析、物体跟踪。

不再献丑了,网上有大佬dusty-nv的讲座,大家自己看下:

S3E1 - Hello AI World Setup

不过,这种东西不过瘾,对吧。所以,我们先介绍两个常用的命令,弄个好玩的视频分析:

4.1 video-viewer

应用与视频的获取,比如:文件/RTP/RTSP/CSI/MIPI等等。

$ ./video-viewer --help
usage: video-viewer [--help] input_URI [output_URI]

View/output a video or image stream.
See below for additional arguments that may not be shown above.

positional arguments:
    input_URI       resource URI of input stream  (see videoSource below)
    output_URI      resource URI of output stream (see videoOutput below)

videoSource arguments: 
    input                resource URI of the input stream, for example:
                             * /dev/video0               (V4L2 camera #0)
                             * csi://0                   (MIPI CSI camera #0)
                             * rtp://@:1234              (RTP stream)
                             * rtsp://user:pass@ip:1234  (RTSP stream)
                             * webrtc://@:1234/my_stream (WebRTC stream)
                             * file://my_image.jpg       (image file)
                             * file://my_video.mp4       (video file)
                             * file://my_directory/      (directory of images)
  --input-width=WIDTH    explicitly request a width of the stream (optional)
  --input-height=HEIGHT  explicitly request a height of the stream (optional)
  --input-rate=RATE      explicitly request a framerate of the stream (optional)
  --input-save=FILE      path to video file for saving the input stream to disk
  --input-codec=CODEC    RTP requires the codec to be set, one of these:
                             * h264, h265
                             * vp8, vp9
                             * mpeg2, mpeg4
                             * mjpeg
  --input-decoder=TYPE   the decoder engine to use, one of these:
                             * cpu
                             * omx  (aarch64/JetPack4 only)
                             * v4l2 (aarch64/JetPack5 only)
  --input-flip=FLIP      flip method to apply to input:
                             * none (default)
                             * counterclockwise
                             * rotate-180
                             * clockwise
                             * horizontal
                             * vertical
                             * upper-right-diagonal
                             * upper-left-diagonal
  --input-loop=LOOP      for file-based inputs, the number of loops to run:
                             * -1 = loop forever
                             *  0 = don't loop (default)
                             * >0 = set number of loops

videoOutput arguments: 
    output               resource URI of the output stream, for example:
                             * file://my_image.jpg       (image file)
                             * file://my_video.mp4       (video file)
                             * file://my_directory/      (directory of images)
                             * rtp://<remote-ip>:1234    (RTP stream)
                             * rtsp://@:8554/my_stream   (RTSP stream)
                             * webrtc://@:1234/my_stream (WebRTC stream)
                             * display://0               (OpenGL window)
  --output-codec=CODEC   desired codec for compressed output streams:
                            * h264 (default), h265
                            * vp8, vp9
                            * mpeg2, mpeg4
                            * mjpeg
  --output-encoder=TYPE  the encoder engine to use, one of these:
                            * cpu
                            * omx  (aarch64/JetPack4 only)
                            * v4l2 (aarch64/JetPack5 only)
  --output-save=FILE     path to a video file for saving the compressed stream
                         to disk, in addition to the primary output above
  --bitrate=BITRATE      desired target VBR bitrate for compressed streams,
                         in bits per second. The default is 4000000 (4 Mbps)
  --headless             don't create a default OpenGL GUI window

logging arguments: 
  --log-file=FILE        output destination file (default is stdout)
  --log-level=LEVEL      message output threshold, one of the following:
                             * silent
                             * error
                             * warning
                             * success
                             * info
                             * verbose (default)
                             * debug
  --verbose              enable verbose logging (same as --log-level=verbose)
  --debug                enable debug logging   (same as --log-level=debug)


4.2 detectnet

基于DNN的物体分析。

$ ./detectnet --help
usage: detectnet [--help] [--network=NETWORK] [--threshold=THRESHOLD] ...
                 input [output]

Locate objects in a video/image stream using an object detection DNN.
See below for additional arguments that may not be shown above.

positional arguments:
    input           resource URI of input stream  (see videoSource below)
    output          resource URI of output stream (see videoOutput below)

detectNet arguments: 
  --network=NETWORK     pre-trained model to load, one of the following:
                            * ssd-mobilenet-v1
                            * ssd-mobilenet-v2 (default)
                            * ssd-inception-v2
                            * peoplenet
                            * peoplenet-pruned
                            * dashcamnet
                            * trafficcamnet
                            * facedetect
  --model=MODEL         path to custom model to load (caffemodel, uff, or onnx)
  --prototxt=PROTOTXT   path to custom prototxt to load (for .caffemodel only)
  --labels=LABELS       path to text file containing the labels for each class
  --input-blob=INPUT    name of the input layer (default is 'data')
  --output-cvg=COVERAGE name of the coverage/confidence output layer (default is 'coverage')
  --output-bbox=BOXES   name of the bounding output layer (default is 'bboxes')
  --mean-pixel=PIXEL    mean pixel value to subtract from input (default is 0.0)
  --confidence=CONF     minimum confidence threshold for detection (default is 0.5)
  --clustering=CLUSTER  minimum overlapping area threshold for clustering (default is 0.75)
  --alpha=ALPHA         overlay alpha blending value, range 0-255 (default: 120)
  --overlay=OVERLAY     detection overlay flags (e.g. --overlay=box,labels,conf)
                        valid combinations are:  'box', 'lines', 'labels', 'conf', 'none'
  --profile             enable layer profiling in TensorRT

objectTracker arguments: 
  --tracking               flag to enable default tracker (IOU)
  --tracker=TRACKER        enable tracking with 'IOU' or 'KLT'
  --tracker-min-frames=N   the number of re-identified frames for a track to be considered valid (default: 3)
  --tracker-drop-frames=N  number of consecutive lost frames before a track is dropped (default: 15)
  --tracker-overlap=N      how much IOU overlap is required for a bounding box to be matched (default: 0.5)

videoSource arguments: 
    input                resource URI of the input stream, for example:
                             * /dev/video0               (V4L2 camera #0)
                             * csi://0                   (MIPI CSI camera #0)
                             * rtp://@:1234              (RTP stream)
                             * rtsp://user:pass@ip:1234  (RTSP stream)
                             * webrtc://@:1234/my_stream (WebRTC stream)
                             * file://my_image.jpg       (image file)
                             * file://my_video.mp4       (video file)
                             * file://my_directory/      (directory of images)
  --input-width=WIDTH    explicitly request a width of the stream (optional)
  --input-height=HEIGHT  explicitly request a height of the stream (optional)
  --input-rate=RATE      explicitly request a framerate of the stream (optional)
  --input-save=FILE      path to video file for saving the input stream to disk
  --input-codec=CODEC    RTP requires the codec to be set, one of these:
                             * h264, h265
                             * vp8, vp9
                             * mpeg2, mpeg4
                             * mjpeg
  --input-decoder=TYPE   the decoder engine to use, one of these:
                             * cpu
                             * omx  (aarch64/JetPack4 only)
                             * v4l2 (aarch64/JetPack5 only)
  --input-flip=FLIP      flip method to apply to input:
                             * none (default)
                             * counterclockwise
                             * rotate-180
                             * clockwise
                             * horizontal
                             * vertical
                             * upper-right-diagonal
                             * upper-left-diagonal
  --input-loop=LOOP      for file-based inputs, the number of loops to run:
                             * -1 = loop forever
                             *  0 = don't loop (default)
                             * >0 = set number of loops

videoOutput arguments: 
    output               resource URI of the output stream, for example:
                             * file://my_image.jpg       (image file)
                             * file://my_video.mp4       (video file)
                             * file://my_directory/      (directory of images)
                             * rtp://<remote-ip>:1234    (RTP stream)
                             * rtsp://@:8554/my_stream   (RTSP stream)
                             * webrtc://@:1234/my_stream (WebRTC stream)
                             * display://0               (OpenGL window)
  --output-codec=CODEC   desired codec for compressed output streams:
                            * h264 (default), h265
                            * vp8, vp9
                            * mpeg2, mpeg4
                            * mjpeg
  --output-encoder=TYPE  the encoder engine to use, one of these:
                            * cpu
                            * omx  (aarch64/JetPack4 only)
                            * v4l2 (aarch64/JetPack5 only)
  --output-save=FILE     path to a video file for saving the compressed stream
                         to disk, in addition to the primary output above
  --bitrate=BITRATE      desired target VBR bitrate for compressed streams,
                         in bits per second. The default is 4000000 (4 Mbps)
  --headless             don't create a default OpenGL GUI window

logging arguments: 
  --log-file=FILE        output destination file (default is stdout)
  --log-level=LEVEL      message output threshold, one of the following:
                             * silent
                             * error
                             * warning
                             * success
                             * info
                             * verbose (default)
                             * debug
  --verbose              enable verbose logging (same as --log-level=verbose)
  --debug                enable debug logging   (same as --log-level=debug)

4.3 演示命令

  1. 网络RTSP摄像头拉流&分析
$ cd jetson-inference/build
$ ./video-viewer --input-codec=h264 rtsp://192.168.78.201:8554/basesoci2c0muxi2c1ov564736
$ ./detectnet --input-codec=h264 rtsp://192.168.78.201:8554/basesoci2c0muxi2c1ov564736
  1. 视频文件播放&分析
$ cd jetson-inference/build
$ ./detectnet --input-codec=h264 rtsp://192.168.78.201:8554/basesoci2c0muxi2c1ov564736
$ ./detectnet ../../../../TrackingBike.mp4 ../../../../TrackingBike_Detect.mp4

Extreme Mountain Biking FPV Drone Chasing

5. 参考资料

【1】Linux 36.2@Jetson Orin Nano基础环境构建


http://www.kler.cn/a/232664.html

相关文章:

  • 宗馥莉的接班挑战:内斗升级,竞品“偷家”
  • 用MVVM设计模式提升WPF开发体验:分层架构与绑定实例解析
  • 解锁微前端的优秀库
  • RabbitMQ高效的消息队列中间件原理及实践
  • 为什么hbase在大数据领域渐渐消失
  • c++写一个死锁并且自己解锁
  • 蓝桥杯刷题day06——平均
  • Peter算法小课堂—枚举优化
  • 前端工程化之:webpack3-5(css module)
  • Redis(十二)Bigkey
  • Qt信号和槽机制(什么是信号和槽,connect函数的形式,按钮的常用信号,QWidget的常用槽,自定义槽函数案例 点击按钮,输出文本)
  • 基于 Python opencv 的人脸识别的酒店客房入侵系统的检测
  • 电脑服务器离线安装.net framework 3.5解决方案(错误:0x8024402c )(如何确定当前系统是否安装NET Framework 3.5)
  • STM32学习笔记——定时器
  • 力扣36.有效的数独
  • AD9361多片同步设计方法
  • Android Studio 安装Flutter插件但是没法创建项目
  • 七、Nacos源码系列:Nacos服务发现
  • 阿里云服务器租用价格表_2024一年_1个月_1小时收费价格表
  • 怎么在bash shell中操作复杂json对象
  • 【玩转408数据结构】线性表——定义和基本操作
  • 华为视频监控接入到视频监控平台 (华为网路监控摄像机IPC和华为视频节点设备VCN)
  • Golang开发:跨域配置
  • 1987-2022年各省进出口总额数据整理(含进口和出口)(无缺失)
  • 12.0 Zookeeper 数据同步流程
  • [CUDA手搓]从零开始用C++ CUDA搭建一个卷积神经网络(LeNet),了解神经网络各个层背后算法原理