当前位置: 首页 > article >正文

js手写Promise(下)

目录

  • resolve与reject的调用时机
    • 封装优化
  • 回调返回Promise
    • isPromise
    • 手动调用then
  • 微队列
  • catch
  • resolve
  • reject
  • all
    • 传入的序列为空
    • 传入的值非Promise
  • race
  • 完整的Promise代码

如果没有看过上半部分的铁铁可以看看这篇文章
js手写Promise(上)

resolve与reject的调用时机

Promisethen中,我们需要解决两个问题,一个是onFulfilled和onRejected什么时候调用,一个是resolve和reject什么时候调用,第一个问题我们在上篇文章中解决了,现在我们需要解决第二个问题
具体而言,什么时候调用resolvereject分为两种情况

  1. 传入的参数不是函数
    因为我们已经提前将resolvereject传递到了handlers中,所以我们可以在run中处理相关逻辑

    #run() {
    	if (this.#state === MyPromise.#PENDING) return
     	while (this.#handlers.length > 0) {
        	const handler = this.#handlers.shift()
        	if (this.#state === MyPromise.#FULFILLED) {
            	if (typeof handler.onFulfilled !== "function") {
                	handler.resolve(this.#value)
            	} else {
                	handler.onFulfilled(this.#value)
            	}
        	}
        	else if (this.#state === MyPromise.#REJECTED) {
            	if (typeof handler.onRejected !== "function") {
                	handler.reject(this.#value)
            	} else {
                	handler.onRejected(this.#value)
            	}
        	}
    	}
    }
    

    如果传入的参数不是函数的话,那then返回的Promise穿透了,状态与调用then的Promise实例状态一致,如果调用then的实例状态为fulfilledthen返回的实例就调用resolve,反之亦然

  2. 传入的参数是函数
    如果传入的参数是函数,我们就需要判断在执行函数的时候有没有报错,如果没有就代表函数执行成功,调用resolve,否则调用reject

    #run() {
    if (this.#state === MyPromise.#PENDING) return
    while (this.#handlers.length > 0) {
        const handler = this.#handlers.shift()
        if (this.#state === MyPromise.#FULFILLED) {
            if (typeof handler.onFulfilled !== "function") {
                handler.resolve(this.#value)
            } else {
                try {
                    const data = handler.onFulfilled(this.#value)
                    handler.resolve(data)
                } catch (error) {
                    handler.reject(error)
                }
            }
        }
        else if (this.#state === MyPromise.#REJECTED) {
            if (typeof handler.onRejected !== "function") {
                handler.reject(this.#value)
            } else {
                try {
                    const data = handler.onRejected(this.#value)
                    handler.resolve(data)
                } catch (error) {
                    handler.reject(error)
                }
            }
        }
    }
    }
    

封装优化

这样问题就解决了,但是我们发现函数中有许多重复代码,我们可以将这些代码封装成一个函数

#run() {
    if (this.#state === MyPromise.#PENDING) return
    while (this.#handlers.length > 0) {
        const handler = this.#handlers.shift()
        if (this.#state === MyPromise.#FULFILLED) {
            this.#runOne(handler.onFulfilled, handler.resolve, handler.reject)
        }
        else if (this.#state === MyPromise.#REJECTED) {
            this.#runOne(handler.onRejected, handler.resolve, handler.reject)
        }
    }
}
#runOne(callback, resolve, reject) {
    if (typeof callback !== "function") {
        const settled = this.#state === MyPromise.#FULFILLED ? resolve : reject
        settled(this.#value)
    } else {
        try {
            const data = callback(this.#value)
            resolve(data)
        } catch (error) {
            reject(error)
        }
    }
}

回调返回Promise

这种情况比较特殊,如果返回的结果是一个Promise的话调用resolve还是reject由这个新的Promise实例决定,我们只需要手动调用它的then方法

isPromise

在调用它的then方法之前我们还需要判断返回的结果是不是一个PromisePromiseA+规范规定,对象或是函数,如果存在then方法就是Promise,所以我们可以写出这么一个辅助函数

class MyPromise {
    static #isPromise(promise) {
        if (typeof promise === "function" || typeof promise === "object") {
            if (typeof promise.then === "function") return true
        }
        return false
    }
}

手动调用then

现在我们就可以手动调用then方法了

#runOne(callback, resolve, reject) {
    if (typeof callback !== "function") {
        const settled = this.#state === MyPromise.#FULFILLED ? resolve : reject
        settled(this.#value)
    } else {
        try {
            const data = callback(this.#value)
            if (MyPromise.#isPromise(data)) data.then(resolve, reject)
            else resolve(data)
        } catch (error) {
            reject(error)
        }
    }
}

微队列

至此我们的then方式实现的差不多了,还有一个小细节就是,then方法里的任务是放入微任务队列里执行的,所以我们还需要封装一个函数用于将任务放入微任务队列

#runOne(callback, resolve, reject) {
    MyPromise.#mircoTask(() => {
        if (typeof callback !== "function") {
            const settled = this.#state === MyPromise.#FULFILLED ? resolve : reject
            settled(this.#value)
        } else {
            try {
                const data = callback(this.#value)
                if (MyPromise.#isPromise(data)) data.then(resolve, reject)
                else resolve(data)
            } catch (error) {
                reject(error)
            }
        }
    })
}
static #mircoTask(callback) {
    if (typeof window === "object" && MutationObserver) {
        const observer = new MutationObserver(callback)
        const p = document.createElement('p')
        observer.observe(p, { childList: true })
        p.innerText = '1'
    } else if (typeof global === "object" && process) {
        process.nextTick(callback)
    } else {
        setTimeout(callback, 0)
    }
}

如果想要把一个任务放入微任务队列需要根据环境分类处理,具体来说有以下几种情况

  1. node环境
    node环境里有一个api叫processprocess.nextTick能将一个任务放入微任务队列中
  2. 浏览器环境
    浏览器中有一个观察器叫MutationObserver,它用于观察一个元素是否变化,如果变化了就将预先设定好的函数放入微任务队列
  3. 其他环境
    如果宿主环境既不是node也不是浏览器,或者不支持MutationObserverprocess,那么就只能通过setTimeOut来模拟微队列了

最后我们来测试一下我们的then方法

let p1 = new MyPromise((resolve, reject) => {
    reject(123)
})
p1.then((res) => {
    console.log("1resolve" + res)
}, (err) => {
    console.log("1reject" + err)
})
p1.then((res) => {
    console.log("2resolve" + res)
}, (err) => {
    return new MyPromise((resolve, reject) => {
        resolve(err)
    })
}).then((res) => {
    console.log("3resolve" + res)
}, (err) => {
    console.log("3reject" + err)
})

结果

catch

catch的实现与then类似,都是向handlers里放入回调,只不过catch放入的回调中onFulfilledundefined

class MyPromise {
    catch(onRejected) {
        return new MyPromise((resolve, reject) => {
            this.#handlersPush(undefined, onRejected, resolve, reject)
            this.#run()
        })
    }
}

我们来测试一下

let p1 = new MyPromise((resolve, reject) => {
    reject(123)
})
p1.catch((err) => {
    console.log(err)
})
let p2 = new MyPromise((resolve, reject) => {
    reject(456)
})
p2.then(null, (err) => {
    return new MyPromise((resolve, reject) => {
        reject(789)
    })
}).catch(err => {
    console.log(err)
})

结果

resolve

这里我们要实现的resolvePromise类方法,回忆我们之前使用Promise的经验,如果resolve中传递的不是Promise,那么Promise会将其包装成一个Promise返回,如果传入的是一个Promise,那么会调用它的then方法,知道了这些我们的代码就可以这么写

static resolve(value) {
    return new MyPromise((resolve, reject) => {
        if (MyPromise.#isPromise(value)) value.then(resolve, reject)
        else resolve(value)
    })
}

我们来测试一下

MyPromise.resolve(1).then(console.log)
MyPromise.resolve(new MyPromise((resolve, reject) => {
    setTimeout(() => {
        resolve(2)
    }, 1000)
})).then(console.log)

结果

reject

rejectresolve类似,只不过resolve是调用resolve方法,而reject是调用reject方法

static reject(reason) {
    return new MyPromise((resolve, reject) => {
        if (MyPromise.#isPromise(reason)) reason.then(resolve, reject)
        else reject(reason)
    })
}

因为和resolve类似,所以我就不测试了

all

all也是Promise的一个类方法,我们需要向all里传入一个参数,表示为一系列Promise的序列,可以是set,也可以是数组all也是返回一个Promise,知道了这些后我们就能将all的声明写出来

static all(promises) {
    return new MyPromise((resolve, reject) => {
        
    })
}

那么现在的问题就是我们什么时候调用resolvereject

传入的序列为空

如果传入的序列为空就没什么好说的了,直接resolve([])就行,那怎么判断序列是否为空呢,定义一个长度变量,我们可以通过for...of来遍历序列,每遍历一次长度变量自增,遍历完后如果长度变量依旧为0表示序列为空

static all(promises) {
    return new MyPromise((resolve, reject) => {
        let i = 0
        for (const item of promises) {
            i++
        }
        if (i === 0) resolve([])
    })
}

传入的值非Promise

因为我们并不确定拿到的东西是否是一个Promise,所以我们需要使用Promise.resolve将它包裹起来

static all(promises) {
    return new MyPromise((resolve, reject) => {
        let i = 0
        for (const item of promises) {
            i++
            MyPromise.resolve(item).then()
        }
        if (i === 0) resolve([])
    })
}

根据Promiseall的逻辑,如果序列中有一个失败,那all返回的Promise的状态就是失败
如果当前Promise的结果为成功的话则需要做两件事,一件事汇总结果,一件事判断Promise是否全部完成
因为all要求返回的结果与传递的序列顺序要求一致,所以在汇总结果时不能使用push,而是应该使用下标
我们每完成一个Promise就记一次数,只要这个数字和我们之前统计的长度变量相同,就代表着这一串Promise执行结束,可以resolve
所以我们的代码可以写成这个样子

static all(promises) {
    return new MyPromise((resolve, reject) => {
        let i = 0
        let result = []
        let fulfilled = 0
        for (const item of promises) {
            let index = i
            i++
            MyPromise.resolve(item).then((data) => {
                result[index] = data
                fulfilled++
                if (fulfilled === i) resolve(result)
            }, reject)
        }
        if (i === 0) resolve([])
    })
}

我们来测试一下

let p1 = new MyPromise((resolve, reject) => {
    resolve(1)
})
let p2 = new MyPromise((resolve, reject) => {
    reject(2)
})
MyPromise.all([]).then(console.log)
MyPromise.all([p1, p2]).then(console.log).catch(err => {
    console.log("err" + err)
})
MyPromise.all([p1, 2, 3, 4]).then(console.log)

结果

race

raceall都是Promise的类方法,实现思路也是大同小异,all是等待全部Promise的结果,race是只要有一个Promise有结果就行,代码如下

static race(promises) {
    return new MyPromise((resolve, reject) => {
        let i = 0
        for (const item of promises) {
            i++
            Promise.resolve(item).then(resolve, reject)
        }
        if (i === 0) resolve([])
    })
}

完整的Promise代码

class MyPromise {
    #state = "pending"
    #value = null
    static #PENDING = "pending"
    static #FULFILLED = "fulfilled"
    static #REJECTED = "rejected"
    #handlers = []
    constructor(executor) {
        const resolve = (data) => {
            this.#changeState(MyPromise.#FULFILLED, data)
        }
        const reject = (reason) => {
            this.#changeState(MyPromise.#REJECTED, reason)
        }
        try {
            executor(resolve, reject)
        } catch (error) {
            reject(error)
        }
    }
    then(onFulfilled, onRejected) {
        return new MyPromise((resolve, reject) => {
            this.#handlersPush(onFulfilled, onRejected, resolve, reject)
            this.#run()
        })
    }
    catch(onRejected) {
        return new MyPromise((resolve, reject) => {
            this.#handlersPush(undefined, onRejected, resolve, reject)
            this.#run()
        })
    }
    static resolve(value) {
        return new MyPromise((resolve, reject) => {
            if (MyPromise.#isPromise(value)) value.then(resolve, reject)
            else resolve(value)
        })
    }
    static reject(reason) {
        return new MyPromise((resolve, reject) => {
            if (MyPromise.#isPromise(reason)) reason.then(resolve, reject)
            else reject(reason)
        })
    }
    static all(promises) {
        return new MyPromise((resolve, reject) => {
            let i = 0
            let result = []
            let fulfilled = 0
            for (const item of promises) {
                let index = i
                i++
                MyPromise.resolve(item).then((data) => {
                    result[index] = data
                    fulfilled++
                    if (fulfilled === i) resolve(result)
                }, reject)
            }
            if (i === 0) resolve([])
        })
    }
    static race(promises) {
        return new MyPromise((resolve, reject) => {
            let i = 0
            for (const item of promises) {
                i++
                Promise.resolve(item).then(resolve, reject)
            }
            if (i === 0) resolve([])
        })
    }
    static #mircoTask(callback) {
        if (typeof window === "object" && MutationObserver) {
            const observer = new MutationObserver(callback)
            const p = document.createElement('p')
            observer.observe(p, { childList: true })
            p.innerText = '1'
        } else if (typeof global === "object" && process) {
            process.nextTick(callback)
        } else {
            setTimeout(callback, 0)
        }
    }
    static #isPromise(promise) {
        if (typeof promise === "function" || typeof promise === "object") {
            if (typeof promise.then === "function") return true
        }
        return false
    }
    #changeState(state, value) {
        if (this.#state !== MyPromise.#PENDING) return
        this.#state = state
        this.#value = value
        this.#run()
    }
    #handlersPush(onFulfilled, onRejected, resolve, reject) {
        this.#handlers.push({
            onFulfilled,
            onRejected,
            resolve,
            reject
        })
    }
    #run() {
        if (this.#state === MyPromise.#PENDING) return
        while (this.#handlers.length > 0) {
            const handler = this.#handlers.shift()
            if (this.#state === MyPromise.#FULFILLED) {
                this.#runOne(handler.onFulfilled, handler.resolve, handler.reject)
            }
            else if (this.#state === MyPromise.#REJECTED) {
                this.#runOne(handler.onRejected, handler.resolve, handler.reject)
            }
        }
    }
    #runOne(callback, resolve, reject) {
        MyPromise.#mircoTask(() => {
            if (typeof callback !== "function") {
                const settled = this.#state === MyPromise.#FULFILLED ? resolve : reject
                settled(this.#value)
            } else {
                try {
                    const data = callback(this.#value)
                    if (MyPromise.#isPromise(data)) data.then(resolve, reject)
                    else resolve(data)
                } catch (error) {
                    reject(error)
                }
            }
        })
    }
}

http://www.kler.cn/a/233494.html

相关文章:

  • Android基于回调的事件处理
  • 面试:C++类成员初始化顺序
  • vue 导出excel接口请求和axios返回值blob类型处理
  • 【华为OD-E卷 - 篮球比赛 100分(python、java、c++、js、c)】
  • OpenCV相机标定与3D重建(53)解决 Perspective-3-Point (P3P) 问题函数solveP3P()的使用
  • Yolo11改进:注意力改进|Block改进|ESSAformer,用于高光谱图像超分辨率的高效Transformer|即插即用
  • Java编程构建高效二手交易平台
  • Python 数组计算模块 NumPy快速入门 这篇就够了
  • Days 23 ElfBoard 板git版本管理工具
  • 多维时序 | MATLAB实现基于CNN-LSSVM卷积神经网络-最小二乘支持向量机多变量时间序列预测
  • (已解决)在vue路由中:Vue.use(VueRouter)和Vue.use(Router);有什么区别?
  • 鸿蒙(HarmonyOS)项目方舟框架(ArkUI)之StepperItem组件
  • 微服务OAuth 2.1扩展额外信息到JWT并解析(Spring Security 6)
  • Unity入门学习
  • 类与结构体(3)
  • 酷开科技,打造非凡的生活体验
  • 开源微服务平台框架的特点是什么?
  • 前端开发:(四)JavaScript入门
  • 前端 > JS 笔试题面试考题(11-15)
  • win32编程系统BUG(Win32 API中的WM_SETTEXT消息)
  • Java集合框架(包装类、泛型)
  • 谷歌发布AI新品Gemini及收费模式;宜家推出基于GPT的AI家装助手
  • CVE-2021-44915 漏洞复现
  • 使用深度学习进行“序列到序列”分类
  • 客户端会话技术-Cookie
  • leetcode 153