当前位置: 首页 > article >正文

回归预测模型:MATLAB多项式回归

1. 多项式回归模型的基本原理

  多项式回归是线性回归的一种扩展,用于分析自变量 X X X与因变量 Y Y Y之间的非线性关系。与简单的线性回归模型不同,多项式回归模型通过引入自变量的高次项来增加模型的复杂度,从而能够拟合数据中的非线性模式。多项式回归模型可以表示为:

Y = β 0 + β 1 X + β 2 X 2 + . . . + β n X n + ϵ Y = \beta_0 + \beta_1X + \beta_2X^2 + ... + \beta_nX^n + \epsilon Y=β0+β1X+β2X2+...+βnXn+ϵ

其中, Y Y Y是因变量, X X X是自变量, β 0 , β 1 , . . . , β n \beta_0, \beta_1, ..., \beta_n β0,β1,...,βn是回归系数, n n n是多项式的最高次数, ϵ \epsilon ϵ是误差项。

2. MATLAB中多项式回归的实现

  在MATLAB中,可以使用polyfit函数来拟合多项式回归模型。polyfit函数可以找到一个多项式的系数,使得该多项式最好地拟合一组数据。使用polyval函数,可以使用这些系数来计算或预测因变量的值。

3. 实例分析

  假设我们有一组数据,表示某一产品销量( Y Y Y)与其价格( X X X)之间的关系。我们想要建立一个多项式回归模型,来预测不同价格下的销量。

数据示例:

价格销量
10200
15150
20120
2590
3060

使用MATLAB进行多项式回归分析:

clc,clear
% 加载数据
X = [10, 15, 20, 25, 30, 35]; % 价格
Y = [200, 150, 120, 90, 60, 40]; % 销量

% 进行多项式回归,选择二次多项式
p = polyfit(X, Y, 2);

% 使用拟合的多项式模型计算销量预测值
X_fit = linspace(min(X), max(X), 100); % 生成更密集的价格数据用于绘图
Y_fit = polyval(p, X_fit);

% 使用拟合的多项式模型计算销量预测值
Y_pred = polyval(p, X); % 使用原始X值计算预测值,用于误差分析

% 计算MAE
MAE = mean(abs(Y - Y_pred));

% 计算RMSE
RMSE = sqrt(mean((Y - Y_pred).^2));

% 计算R^2
SS_res = sum((Y - Y_pred).^2);
SS_tot = sum((Y - mean(Y)).^2);
R2 = 1 - (SS_res / SS_tot);

% 展示拟合参数和误差指标
disp('拟合参数(多项式系数):');
disp(p);
fprintf('MAE: %f\n', MAE);
fprintf('RMSE: %f\n', RMSE);
fprintf('R^2: %f\n', R2);

% 绘制原始数据和拟合曲线
figure;
plot(X, Y, 'o', X_fit, Y_fit, '-');
title('价格与销量的多项式回归分析');
xlabel('价格');
ylabel('销量');
legend('原始数据', '拟合曲线', 'Location', 'NorthEast');

上述代码首先使用polyfit函数基于原始数据拟合了一个二次多项式模型,然后利用polyval函数计算了一系列预测值,以此来绘制回归曲线。这样可以直观地展示价格与销量之间的非线性关系及其趋势。

4. 求解结果

拟合多项式系数以及评价指标结果如下:

拟合结果图如下:


http://www.kler.cn/a/233928.html

相关文章:

  • 以往运维岗本人面试真题分享
  • 如何查看电脑关机时间
  • 通用项目工程的过程视图概览
  • Nebula NGQL语言的使用 一
  • Python教程笔记(1)
  • 重学SpringBoot3-整合 Elasticsearch 8.x (三)使用Repository
  • 中国判决生效,诺基亚全面与中国手机签署授权协议,降低专利费
  • STM32的ADC电压采集
  • Python和Java的区别(不断更新)
  • 算法学习——LeetCode力扣字符串篇
  • DolphinScheduler-3.2.0 集群搭建
  • Golang-Map有序输出——使用orderedmap库实现
  • 机器学习复习(8)——逻辑回归
  • Springboot启动出现Waiting for changelog lock...问题
  • docker进阶 问题1
  • vue3 可视化大屏自适应屏幕组件
  • (四)elasticsearch 源码之索引流程分析
  • 学习总结15
  • 【MySQL】数据库的基础——数据库的介绍、MySQL的介绍和架构、SQL分类、MySQL的基本使用、MySQL的存储引擎
  • Matlab使用点云工具箱进行点云配准ICP\NDT\CPD
  • 软件应用实例分享,电玩计时计费怎么算,佳易王PS5游戏计时器系统程序教程
  • 【工具】Android|Android Studio 长颈鹿版本安装下载使用详解
  • windows安装sqlite
  • C语言实现memcpy、memmove库函数
  • C++初阶:适合新手的手撕vector(模拟实现vector)
  • YOLOv5改进 | 融合改进篇 | 华为VanillaNet + BiFPN突破涨点极限