当前位置: 首页 > article >正文

第T10周:使用TensorFlow实现数据增强

  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊
  • 在本教程中,你将学会如何进行数据增强,并通过数据增强用少量数据达到非常非常棒的识别准确率。我将展示两种数据增强方式,以及如何自定义数据增强方式并将其放到我们代码当中,两种数据增强方式如下:
    1、将数据增强模块嵌入model中
    2、在Dataset数据集中进行数据增强

    文章目录

    • 一、前期工作
      • 1.设置GPU(如果使用的是CPU可以忽略这步)
      • 2、加载数据
    • 二、数据增强
    • 三、增强方式
    • 四、训练模型
    • 五、自定义增强函数
    • 六、总结

电脑环境:
语言环境:Python 3.8.0
编译器:Jupyter Notebook
深度学习环境:tensorflow 2.17.0

一、前期工作

1.设置GPU(如果使用的是CPU可以忽略这步)

import tensorflow as tf

gpus = tf.config.list_physical_devices("GPU")

if gpus:
    tf.config.experimental.set_memory_growth(gpus[0], True)  #设置GPU显存用量按需使用
    tf.config.set_visible_devices([gpus[0]],"GPU")

# 打印显卡信息,确认GPU可用
print(gpus)

2、加载数据

data_dir   = "./365-8-data/"
img_height = 224
img_width  = 224
batch_size = 32

train_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.3,
    subset="training",
    seed=12,
    image_size=(img_height, img_width),
    batch_size=batch_size)

Found 3400 files belonging to 2 classes.
Using 2380 files for training.

val_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.3,
    subset="training",
    seed=12,
    image_size=(img_height, img_width),
    batch_size=batch_size)

Found 3400 files belonging to 2 classes.
Using 1020 files for validation.

由于原始数据集不包含测试集,因此需要创建一个。使用 tf.data.experimental.cardinality 确定验证集中有多少批次的数据,然后将其中的 20% 移至测试集。

val_batches = tf.data.experimental.cardinality(val_ds)
test_ds     = val_ds.take(val_batches // 5)
val_ds      = val_ds.skip(val_batches // 5)

print('Number of validation batches: %d' % tf.data.experimental.cardinality(val_ds))
print('Number of test batches: %d' % tf.data.experimental.cardinality(test_ds))

Number of validation batches: 26
Number of test batches: 6

tf.data.experimental.cardinality 函数是一个用于确定tf.data.Dataset对象中包含的元素数量的实验性功能。然而,需要注意的是,这个函数并不总是能够返回确切的元素数量,特别是对于无限数据集或包含复杂转换的数据集。

数据一共有猫、狗两类:

class_names = train_ds.class_names
print(class_names)

[‘cat’, ‘dog’]

数据归一化:

AUTOTUNE = tf.data.AUTOTUNE

def preprocess_image(image,label):
    return (image/255.0,label)

# 归一化处理
train_ds = train_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)
val_ds   = val_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)
test_ds  = test_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)

train_ds = train_ds.cache().prefetch(buffer_size=AUTOTUNE)
val_ds   = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

数据可视化:

plt.figure(figsize=(15, 10))  # 图形的宽为15高为10

for images, labels in train_ds.take(1):
    for i in range(8):
        
        ax = plt.subplot(5, 8, i + 1) 
        plt.imshow(images[i])
        plt.title(class_names[labels[i]])
        
        plt.axis("off")

在这里插入图片描述

二、数据增强

我们可以使用 tf.keras.layers.experimental.preprocessing.RandomFlip tf.keras.layers.experimental.preprocessing.RandomRotation 进行数据增强,当然还有其他的增强函数(新版本的tf增强函数调用函数不同):

  • tf.keras.layers.experimental.preprocessing.RandomFlip:水平和垂直随机翻转每个图像。
  • tf.keras.layers.experimental.preprocessing.RandomRotation:随机旋转每个图像。
  • tf.keras.layers.experimental.preprocessing.RandomZoom:随机裁剪和重新调整大小来模拟缩放效果。
  • tf.keras.layers.experimental.preprocessing.RandomContrast:调整图像的对比度。
  • tf.keras.layers.experimental.preprocessing.RandomBrightness:调整图像的亮度。
data_augmentation = tf.keras.Sequential([
  tf.keras.layers.experimental.preprocessing.RandomFlip("horizontal_and_vertical"),
  tf.keras.layers.experimental.preprocessing.RandomRotation(0.2),
])

第一个层表示进行随机的水平和垂直翻转,而第二个层表示按照 0.2 的弧度值进行随机旋转。
增加一张图片为一个批次:

# Add the image to a batch.
image = tf.expand_dims(images[i], 0)
plt.figure(figsize=(8, 8))
for i in range(9):
    augmented_image = data_augmentation(image)
    ax = plt.subplot(3, 3, i + 1)
    plt.imshow(augmented_image[0])
    plt.axis("off")

在这里插入图片描述
更多的数据增强方式可以参考:链接: link

三、增强方式

方法一:将其嵌入model中

model = tf.keras.Sequential([
  data_augmentation,
  layers.Conv2D(16, 3, padding='same', activation='relu'),
  layers.MaxPooling2D(),
])

这样做的好处是:

  • 数据增强这块的工作可以得到GPU的加速(如果你使用了GPU训练的话)
    注意:只有在模型训练时(Model.fit)才会进行增强,在模型评估(Model.evaluate)以及预测(Model.predict)时并不会进行增强操作。

方法二:在Dataset数据集中进行数据增强

batch_size = 32
AUTOTUNE = tf.data.AUTOTUNE

def prepare(ds):
    ds = ds.map(lambda x, y: (data_augmentation(x, training=True), y), num_parallel_calls=AUTOTUNE)
    return ds

train_ds = prepare(train_ds)

四、训练模型

model = tf.keras.Sequential([
  layers.Conv2D(16, 3, padding='same', activation='relu'),
  layers.MaxPooling2D(),
  layers.Conv2D(32, 3, padding='same', activation='relu'),
  layers.MaxPooling2D(),
  layers.Conv2D(64, 3, padding='same', activation='relu'),
  layers.MaxPooling2D(),
  layers.Flatten(),
  layers.Dense(128, activation='relu'),
  layers.Dense(len(class_names))
])

model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])
              
epochs=20
history = model.fit(
  train_ds,
  validation_data=val_ds,
  epochs=epochs
)
Epoch 1/20
75/75 ━━━━━━━━━━━━━━━━━━━━ 399s 5s/step - accuracy: 0.5225 - loss: 293.7218 - val_accuracy: 0.6775 - val_loss: 0.5858
Epoch 2/20
75/75 ━━━━━━━━━━━━━━━━━━━━ 73s 376ms/step - accuracy: 0.7183 - loss: 0.5656 - val_accuracy: 0.8080 - val_loss: 0.4210
..............
Epoch 20/20
75/75 ━━━━━━━━━━━━━━━━━━━━ 25s 329ms/step - accuracy: 0.9430 - loss: 0.1563 - val_accuracy: 0.9263 - val_loss: 0.2544
loss, acc = model.evaluate(test_ds)
print("Accuracy", acc)

6/6 ━━━━━━━━━━━━━━━━━━━━ 1s 100ms/step - accuracy: 0.9310 - loss: 0.1482
Accuracy 0.921875

五、自定义增强函数

import random
# 这是大家可以自由发挥的一个地方
def aug_img(image):
    seed = (random.randint(0,9), 0)
    # 随机改变图像对比度
    stateless_random_brightness = tf.image.stateless_random_contrast(image, lower=0.1, upper=1.0, seed=seed)
    return stateless_random_brightness
image = tf.expand_dims(images[3]*255, 0)
print("Min and max pixel values:", image.numpy().min(), image.numpy().max())

Min and max pixel values: 2.4591687 241.47968

plt.figure(figsize=(8, 8))
for i in range(9):
    augmented_image = aug_img(image)
    ax = plt.subplot(3, 3, i + 1)
    plt.imshow(augmented_image[0].numpy().astype("uint8"))

    plt.axis("off")

在这里插入图片描述
将自定义增强函数应用到我们数据上

AUTOTUNE = tf.data.AUTOTUNE

import random
# 这是大家可以自由发挥的一个地方
def aug_img(image):
    seed = (random.randint(0,9), 0)
    # 随机改变图像对比度
    stateless_random_brightness = tf.image.stateless_random_contrast(image, lower=0.1, upper=1.0, seed=seed)
    return stateless_random_brightness

def preprocess_image(image, label):
    image = image / 255.0
    image = aug_img(image)
    return (image, label)
# 归一化处理
train_ds = train_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)
train_ds = train_ds.cache().prefetch(buffer_size=AUTOTUNE)

六、总结

本次学习了使用两种方式的数据增强提高模型性能以及自定义数据增强函数。


http://www.kler.cn/a/282526.html

相关文章:

  • 图形 2.6 伽马校正
  • 每天五分钟机器学习:支持向量机算法数学基础之核函数
  • ServletConfig、ServletContext、HttpServletRequest与HttpServletResponse常见API
  • ThriveX 博客管理系统前后端项目部署教程
  • springboot实现简单的数据查询接口(无实体类)
  • 我的docker随笔45:在龙芯平台安装docker
  • 【赵渝强老师】使用Docker Machine远程管理Docker
  • 第42篇 使用数码管实现计数器<三>
  • TCP、HTTP以及RPC的梳理
  • Python将Word文档转为PDF
  • npm报错信息集合——基础积累
  • vue3如何监听reactive对象是哪个属性发生的变化
  • 东华医疗协同办公系统templateFile接口存在任意文件读取漏洞 附POC
  • 我的电脑/资源管理器里无法显示新硬盘?
  • Lua收集请求日志
  • 全栈程序员 | 精通安卓、鸿蒙,小程序,Java、Vue.js、SpringBoot及更多技术
  • Git之1.7版本重要特性及用法实例(五十五)
  • 今日算法:蓝桥杯基础题之“微生物增殖”
  • 网络安全面试经验80篇
  • C#命名空间(Namespace)
  • 如何本地搭建 Whisper 语音识别模型?一文解决
  • Vulkan入门系列16 - 生成多级纹理贴图( Mipmaps)
  • Git之1.6版本重要特性及用法实例(五十四)
  • 请你学习:前端布局3 - flex
  • 实训day36(8.26)
  • 概率论与高等数学、线性代数的联系及应用