当前位置: 首页 > article >正文

使用LLaMA-Factory快速训练自己的专用大模型

本文聊聊 LLama-Factory,它是一个开源框架,这里头可以找到一系列预制的组件和模板,让你不用从零开始,就能训练出自己的语言模型(微调)。不管是聊天机器人,还是文章生成器,甚至是问答系统,都能搞定。而且,LLama-Factory 还支持多种框架和数据集,这意味着你可以根据项目需求灵活选择,把精力集中在真正重要的事情上——创造价值。

使用LLama-Factory,常见的就是训练LoRA模型,增强模型在某方面的生成能力。本教程将以增强 GLM-4-9B-Chat 模型的脑筋急转弯能力为例,演示LoRA模型的微调方法。

环境准备

本地使用

LLama-Factory 的安装比较简单,大家直接看官网页面就够了:

github.com/hiyouga/LLa…

云镜像

如果你本地没有一张好显卡,也不想费劲的安装,就想马上开始训练。

可以试试我的云镜像,开箱即用:www.haoee.com/application…

平台注册就送一定额度,可以完成本教程的的演示示例。

镜像已经内置了几个基础模型,大都在6B-9B,单卡24G显存即可完成LoRA微调。

如果要微调更大的模型,则需要更多的显卡和显存,请在购买GPU时选择合适的显卡和数量。

已经内置的模型:Yi-1.5-9B-Chat、Qwen2-7B、meta-llama-3.1-8b-instruct、glm-4-9b-chat、chatglm3-6b

如果缺少你需要的模型,可以给我反馈。

假设你已经解决了程序运行环境问题,下边将开始讲解 LLama-Factory 的使用方法。

LLama-Factory 直接命令行和Web页面训练,为了方便入门,这篇文章以Web页面训练为例。

选择基础模型

语言:zh,因为我们要微调的是中文模型。

模型选择:GLM-4-9B-Chat

模型路径:/root/LLaMA-Factory/models/glm-4-9b-chat,默认会自动下载模型,不过速度可能比较慢,我们的镜像中已经下载好这个模型,所以直接填写路径更快。

微调方法:lora

准备训练数据集

LLaMA-Factory自带了一些常用的数据集,如果你使用的数据集不在里边,可以修改 data/dataset_info.json,在其中增加自己的数据集。

这里我使用的是一个弱智吧问答数据集,数据集的格式是 alpaca,来源:huggingface.co/datasets/Lo…

训练参数设置

训练参数需要根据实际训练效果进行调整,这里给出一个参考设置。

数据集:请根据你的需要选择,这里选择我上边定义的 ruozhiba_qa。

学习率:1e-4,设置的大点,有利于模型拟合。

计算类型:如果显卡较旧,建议计算类型选择fp16;如果显卡比较新,建议选择bf16。

梯度累计:2,有利于模型拟合。

LoRA+学习率比例:16,相比LoRA,LoRA+续写效果更好。

LoRA作用模块:all 表示将LoRA层挂载到模型的所有线性层上,提高拟合效果。

开始训练

点击“开始”按钮,可以在页面上看到训练进度和训练效果。

根据训练方法和训练数据的大小,训练需要的时间不定。

推理测试

在“检查点路径”这里加载刚刚训练的LoRA模型,然后切换到“Chat”页签,点击“加载模型”。

测试完毕后,记得点击“卸载模型”,因为模型占用显存比较大,不释放的话,再进行别的任务可能会出错。

对比训练前后的变化:

训练前:

训练后:

这是一个比较感性的测试,如果需要更为正式的效果评估,请使用“Evaluate & Predict” 选择合适的评测数据集进行评估。

合并导出模型

有时候我们需要把模型导出来放在别的地方使用,输出一个完整的模型文件,而不是基础模型+LoRA模型。

检查点路径:训练出来的LoRA模型

导出目录:设置一个服务器上的路径,新的模型会存放到这里。

最后点击“开始导出”就行了。导出完毕后,请前往服务器相关的路径中下载模型。

LLaMA-Factory 架构

最后送大家一张 LLaMA-Factory 的架构图,方便理解其原理。

图片左侧:显示了 LLaMA-Factory 的架构,分为四个主要部分:LlamaBoard、Trainer、Model Loader 和 Data Worker。

  • LlamaBoard:用于参数配置和训练状态监视。
  • Trainer:负责优化和训练方法的选择,如 LoRA+、GaLoRe、Pre-train、SFT 等。
  • Model Loader:负责模型初始化、补丁、量化和适配器等功能。
  • Data Worker:负责加载、对齐、预处理和合并训练数据。

图片右侧:列出了支持的流行语言模型和大小,以及支持的训练方法。

  • 支持的语言模型和大小:LLaMA、LLaMA-2、LLaMA-3、Command-R、Mistral/Mixtral、OLMo、Phi-1.5/2、Qwen、DeepSeek (MoE)、Falcon、Gemma/CodeGemma 和 StarCoder2。
  • 支持的训练方法:全量调整、冻结调整、LoRA、QLoRA、奖励建模、PPO 训练、DPO 训练、ORPO 训练。

总体上来说,LLama-Factory 的使用还是挺顺利的,没有太多的坑。

作者:萤火架构
链接:https://juejin.cn/post/7409974426371047439


http://www.kler.cn/a/288663.html

相关文章:

  • 计算机网络之---数据传输与比特流
  • SpringBoot日常:集成Kafka
  • SpringCloud系列教程:微服务的未来(十)服务调用、注册中心原理、Nacos注册中心
  • 代码随想录 链表 test 5
  • 使用高云小蜜蜂GW1N-2实现MIPI到LVDS(DVP)转换案例分享
  • 【网络安全 | 漏洞挖掘】HubSpot 全账户接管(万字详析)
  • 空间计量 | 似不相关回归SUR
  • k8s的Service和持久化存储
  • B端系统门门清之:CRM-客户管理系统,客户是一切的源头。
  • 动态规划---分割等和子集
  • 8.30-使用docker容器部署考试项目+使用Dockerfile部署java项目
  • 视频:Python深度学习量化交易策略、股价预测:LSTM、GRU深度门控循环神经网络|附代码数据...
  • (十五)SpringCloudAlibaba-Sentinel持久化到Nacos
  • python图像处理基础(skimage、PIL、OpenCV)
  • Java设计模式之建造者模式详细讲解和案例示范
  • JVM面试(二)内存区域划分
  • 无人机专业大学生参与无人机飞手执照培训技术分析
  • 【CPP 基础】如何把cpp库,分装给 c# 用。
  • 数据结构---线性表--栈和队列
  • ActiveMQ实战指南:实现发布/订阅(publish-subscribe)消息发送!
  • Unity Android 进阶之 【Android 添加一个启动动画】在Unity场景加载完之前,避免 【Unity 启动界面慢 黑屏时间长】的情况
  • 青远生态为云南林业规划院定制开发的自然保护地规划智能编制系统顺利通过验收
  • Golang | Leetcode Golang题解之第385题迷你语法分析器
  • Java图形用户界面之Applet设计
  • python django 使用教程
  • 使用 streamlink 把 m3u8 转为 mp4