代码随想录 刷题记录-27 图论 (4)拓扑排序
一、拓扑排序精讲
题目:117. 软件构建
拓扑排序的背景
本题是拓扑排序的经典题目。
拓扑排序是经典的图论问题。
先说说 拓扑排序的应用场景。
大学排课,例如 先上A课,才能上B课,上了B课才能上C课,上了A课才能上D课,等等一系列这样的依赖顺序。 问给规划出一条 完整的上课顺序。
拓扑排序在文件处理上也有应用,我们在做项目安装文件包的时候,经常发现 复杂的文件依赖关系, A依赖B,B依赖C,B依赖D,C依赖E 等等。
如果给出一条线性的依赖顺序来下载这些文件呢?
有录友想上面的例子都很简单啊,我一眼能给排序出来。
那如果上面的依赖关系是一百对呢,一千对甚至上万个依赖关系,这些依赖关系中可能还有循环依赖,你如何发现循环依赖呢,又如果排出线性顺序呢。
所以 拓扑排序就是专门解决这类问题的。
概括来说,给出一个 有向图,把这个有向图转成线性的排序 就叫拓扑排序。
当然拓扑排序也要检测这个有向图 是否有环,即存在循环依赖的情况,因为这种情况是不能做线性排序的。
所以拓扑排序也是图论中判断有向无环图的常用方法。
总结,拓扑排序应用于以下场景:
(1)处理依赖关系,把一个有向图转成线性的排序。
(2)判断有向无环图。
模拟过程
用本题的示例来模拟这一过程:
1、找到入度为0 的节点,加入结果集
2、将该节点从图中移除
1、找到入度为0 的节点,加入结果集
这里大家会发现,节点1 和 节点2 入度都为0, 选哪个呢?
选哪个都行,所以这也是为什么拓扑排序的结果是不唯一的。
2、将该节点从图中移除
1、找到入度为0 的节点,加入结果集
节点2 和 节点3 入度都为0,选哪个都行,这里选节点2
2、将该节点从图中移除
后面的过程一样的,节点3 和 节点4,入度都为0,选哪个都行。
最后结果集为: 0 1 2 3 4 。当然结果不唯一的。
判断有环
如果有 有向环怎么办呢?例如这个图:
这个图,我们只能将入度为0 的节点0 接入结果集。
之后,节点1、2、3、4 形成了环,找不到入度为0 的节点了,所以此时结果集里只有一个元素。
那么如果我们发现结果集元素个数 不等于 图中节点个数,我们就可以认定图中一定有 有向环。
这也是拓扑排序判断有向环的方法。
通过以上过程的模拟大家会发现这个拓扑排序好像不难,还有点简单。
写代码
理解思想后,确实不难,但代码写起来也不容易。
为了每次可以找到所有节点的入度信息,我们要在初始化的时候,就把每个节点的入度 和 每个节点的依赖关系做统计。
代码如下:
cin >> n >> m;
vector<int> inDegree(n, 0); // 记录每个文件的入度
vector<int> result; // 记录结果
unordered_map<int, vector<int>> umap; // 记录文件依赖关系
while (m--) {
// s->t,先有s才能有t
cin >> s >> t;
inDegree[t]++; // t的入度加一
umap[s].push_back(t); // 记录s指向哪些文件
}
找入度为0 的节点,我们需要用一个队列放存放。
因为每次寻找入度为0的节点,不一定只有一个节点,可能很多节点入度都为0,所以要将这些入度为0的节点放到队列里,依次去处理。
代码如下:
queue<int> que;
for (int i = 0; i < n; i++) {
// 入度为0的节点,可以作为开头,先加入队列
if (inDegree[i] == 0) que.push(i);
}
开始从队列里遍历入度为0 的节点,将其放入结果集。
while (que.size()) {
int cur = que.front(); // 当前选中的节点
que.pop();
result.push_back(cur);
// 将该节点从图中移除
}
这里面还有一个很重要的过程,如何把这个入度为0的节点从图中移除呢?
首先我们为什么要把节点从图中移除?
为的是将 该节点作为出发点所连接的边删掉。
删掉的目的是什么呢?
要把 该节点作为出发点所连接的节点的 入度 减一。
如果这里不理解,看上面的模拟过程第一步:
这事节点1 和 节点2 的入度为 1。
将节点0删除后,图为这样:
那么 节点0 作为出发点 所连接的节点的入度 就都做了 减一 的操作。
此时 节点1 和 节点 2 的入度都为0, 这样才能作为下一轮选取的节点。
所以,我们在代码实现的过程中,本质是要将 该节点作为出发点所连接的节点的 入度 减一 就可以了,这样好能根据入度找下一个节点,不用真在图里把这个节点删掉。
该过程代码如下:
while (que.size()) {
int cur = que.front(); // 当前选中的节点
que.pop();
result.push_back(cur);
// 将该节点从图中移除
vector<int> files = umap[cur]; //获取cur指向的节点
if (files.size()) { // 如果cur有指向的节点
for (int i = 0; i < files.size(); i++) { // 遍历cur指向的节点
inDegree[files[i]] --; // cur指向的节点入度都做减一操作
// 如果指向的节点减一之后,入度为0,说明是我们要选取的下一个节点,放入队列。
if(inDegree[files[i]] == 0) que.push(files[i]);
}
}
}
最后代码如下:
#include <iostream>
#include <vector>
#include <queue>
#include <unordered_map>
using namespace std;
int main() {
int m, n, s, t;
cin >> n >> m;
vector<int> inDegree(n, 0); // 记录每个文件的入度
unordered_map<int, vector<int>> umap;// 记录文件依赖关系
vector<int> result; // 记录结果
while (m--) {
// s->t,先有s才能有t
cin >> s >> t;
inDegree[t]++; // t的入度加一
umap[s].push_back(t); // 记录s指向哪些文件
}
queue<int> que;
for (int i = 0; i < n; i++) {
// 入度为0的文件,可以作为开头,先加入队列
if (inDegree[i] == 0) que.push(i);
//cout << inDegree[i] << endl;
}
// int count = 0;
while (que.size()) {
int cur = que.front(); // 当前选中的文件
que.pop();
//count++;
result.push_back(cur);
vector<int> files = umap[cur]; //获取该文件指向的文件
if (files.size()) { // cur有后续文件
for (int i = 0; i < files.size(); i++) {
inDegree[files[i]] --; // cur的指向的文件入度-1
if(inDegree[files[i]] == 0) que.push(files[i]);
}
}
}
if (result.size() == n) {
for (int i = 0; i < n - 1; i++) cout << result[i] << " ";
cout << result[n - 1];
} else cout << -1 << endl;
}
本题的Java代码:
import java.util.*;
import java.util.List;
public class Main {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
int n = scanner.nextInt();
int m = scanner.nextInt();
int[] inDegree = new int[n];
Map<Integer,List<Integer>> map = new HashMap<>();
for(int i = 0 ; i < n ; i++){
map.put(i,new ArrayList<>());
}
for(int i = 0 ; i < m ; i++){
int s = scanner.nextInt();
int t = scanner.nextInt();
inDegree[t]++;
map.get(s).add(t);
}
Queue<Integer> queue = new ArrayDeque<>();
for(int i = 0 ; i < n ; i++){
if(inDegree[i] == 0){
queue.add(i);
}
}
List<Integer> result = new ArrayList<>();
while(!queue.isEmpty()){
int node = queue.remove();
result.add(node);
List<Integer> nextNodes = map.get(node);
for(Integer nextNode : nextNodes){
inDegree[nextNode]--;
if(inDegree[nextNode] == 0){
queue.add(nextNode);
}
}
}
if(result.size() == n){
for(int i = 0 ; i < result.size() - 1 ; i++){
System.out.print(result.get(i) + " ");
}
System.out.println(result.get(result.size()-1));
}else{
System.out.println("-1");
}
}
}
注意本题的编号从0开始。