当前位置: 首页 > article >正文

【代码随想录训练营第42期 Day55打卡 - 图论Part5 - 并查集的应用

目录

一、并查集

适用范围

三大基本操作

二、经典题目

题目:卡码网 107. 寻找存在的路径

题目链接

题解:并查集

 三、小结


一、并查集

适用范围

  1. 动态连通性问题:并查集可以判断两个节点是否在同一个连通分量中,这在处理网络连接、社交网络关系、图的连通性等场景中非常有用。

    例如,在一个无向图中,可以快速判断两个顶点是否通过某些边相连。

  2. 图的简化:通过并查集,可以将一个图简化为若干个连通分量,每个连通分量可以看作一个超级节点,从而简化图的表示和分析。

  3. 网络延迟最小化:在网络中,通过并查集可以找到两点之间的最短路径,从而实现网络延迟的最小化。

  4. 等价类划分:并查集可以用于将元素划分为等价类,例如在编译原理中的符号表合并、类型检查等。

  5. 检测和处理成环问题:在某些问题中,需要检测是否存在环,并查集可以用于这类检测。

三大基本操作

1.初始化(Init):

初始化并查集,通常为每个元素创建一个单元素集合。

每个元素指向自己作为父节点,表示它是自己的集合的代表。

2.查找(Find):

查找元素所在的集合的代表(根节点)。

通常伴随着路径压缩优化,以加速后续的查找操作。

这里注意:路径压缩是指在查找一个节点的根节点时,将路径上的所有节点直接连接到根节点上。这样,下次查找这些节点时,可以直接到达根节点,而不需要再次遍历整个路径。

3.合并(Join或者Union):

将两个元素所在的集合合并为一个集合。

通常通过将一个集合的代表指向另一个集合的代表来实现。

并查集模板如下(几个基本操作):

void init()            //初始化
{
    for (int i = 1; i <= n; i++) 
        father[i] = i;           
}

int find(int u)    //查找
{
    if (u != father[u])              
        father[u] = find(father[u]); 
    return father[u];                
}

bool isSame(int u, int v)    //判断两节点是否同一根节点(是否连通)
{
    int rootu = find(u);
    int rootv = find(v);
    return rootu == rootv;
}

void join(int u, int v)    //合并
{
    int rootu = find(u); 
    int rootv = find(v); 
    if (rootu != rootv)
        father[rootv] = rootu; 
}

二、经典题目

题目:卡码网 107. 寻找存在的路径

题目链接

107. 寻找存在的路径 (kamacoder.com)

题目描述

给定一个包含 n 个节点的无向图中,节点编号从 1 到 n (含 1 和 n )。

你的任务是判断是否有一条从节点 source 出发到节点 destination 的路径存在。

输入描述

第一行包含两个正整数 N 和 M,N 代表节点的个数,M 代表边的个数。 

后续 M 行,每行两个正整数 s 和 t,代表从节点 s 与节点 t 之间有一条边。 

最后一行包含两个正整数,代表起始节点 source 和目标节点 destination。

输出描述

输出一个整数,代表是否存在从节点 source 到节点 destination 的路径。如果存在,输出 1;否则,输出 0。

输入示例

5 4
1 2
1 3
2 4
3 4
1 4

输出示例

1

提示信息

数据范围:

1 <= M, N <= 100。

题解:并查集

这就是上边提到的适用范围的第一种:动态连通性问题 -- 判断两个顶点是否通过某些边相连

其实就是模板的简单套用,最终只需要判断题目要求的节点 source 和节点 destination是否连通即可。

简述一下三大基本操作(含具体注释):

初始化:

// 并查集初始化
void init()
{
    for (int i = 1; i <= n; i++) // 注意本题节点是从1到n
        father[i] = i;           // 初始化每个节点的父节点指向自己
}

查找:

// 并查集里寻找该节点的根节点(带路径压缩)
int find(int u)
{
    if (u != father[u])              // 如果当前节点不是根节点,就会递归地调用 find 函数来找到根节点,并将沿途的所有节点的父节点设置为根节点
        father[u] = find(father[u]); // 路径压缩:将u的父节点设置为u的根节点
    return father[u];                // 返回u的根节点
}

合并:

// join 函数用于合并两个节点所在的集合:将v->u这条边加入并查集
void join(int u, int v)
{
    int rootu = find(u); // u的根节点
    int rootv = find(v); // v的根节点
    if (rootu != rootv)
        father[rootv] = rootu; // 将v-u这条边加入并查集:将节点 v 的根节点(也是 v 所在集合的代表)的父节点设置为 u 的根节点。这样,v 的根节点及其所有子节点(包括 v)现在都属于以 u 的根节点为代表的集合
}

完整代码如下:

#include <bits/stdc++.h>
using namespace std;

int n;                                    // 节点数量
vector<int> father = vector<int>(101, 0); // 并查集数据结构:节点编号从1到n,而题目节点个数最大为100 -- 故初始化大小101

// 并查集初始化
void init()
{
    for (int i = 1; i <= n; i++) // 注意本题节点是从1到n
        father[i] = i;           // 初始化每个节点的父节点指向自己
}

// 并查集里寻找该节点的根节点(带路径压缩)
int find(int u)
{
    if (u != father[u])              // 如果当前节点不是根节点,就会递归地调用 find 函数来找到根节点,并将沿途的所有节点的父节点设置为根节点
        father[u] = find(father[u]); // 路径压缩:将u的父节点设置为u的根节点
    return father[u];                // 返回u的根节点
}

// 判断u和v是否找到同一个根节点 -- 是否在同一个集合中
bool isSame(int u, int v)
{
    int rootu = find(u);
    int rootv = find(v);
    return rootu == rootv;
}

// join 函数用于合并两个节点所在的集合:将v->u这条边加入并查集
void join(int u, int v)
{
    int rootu = find(u); // u的根节点
    int rootv = find(v); // v的根节点
    if (rootu != rootv)
        father[rootv] = rootu; // 将v-u这条边加入并查集:将节点 v 的根节点(也是 v 所在集合的代表)的父节点设置为 u 的根节点。这样,v 的根节点及其所有子节点(包括 v)现在都属于以 u 的根节点为代表的集合
}

int main()
{
    int m, s, t, source, destination;
    cin >> n >> m;
    init(); // 初始化并查集
    while (m--)
    {
        cin >> s >> t;
        join(s, t); // 将s和t所在的集合合并(即将s-t这条边加入并查集)
    }
    cin >> source >> destination;
    if (isSame(source, destination)) // 判断这两个节点是否在同一个集合中(是否连通)-- 有同一个根
        cout << 1 << endl;
    else
        cout << 0 << endl;
}

 三、小结

并查集是一种常见的数据结构,在了解其基本操作的同时,更应该了解并查集是如何实现的,并且具有怎样的作用,这样才能加深对代码的理解。今天的打卡到此结束,后边会继续加油!


http://www.kler.cn/a/298515.html

相关文章:

  • VS2022 安装和配置 vcpkg
  • Mac中配置vscode(第一期:python开发)
  • DeepSeek-V3与GPT-4o的对比详解
  • Selenium 的四种等待方式及使用场景
  • 你好,2025!JumpServer开启新十年
  • 成为LabVIEW自由开发者
  • fpga系列 HDL:全连接层InegrationFCpart.v的权重读取 $readmemh
  • Oracle使用序列后提示违反唯一约束---解决办法
  • 【人工智能】枢纽:数据驱动洞察引领未来智能系统
  • SFC CSS 功能:深层选择/插槽选择器/动态绑定
  • axios取消请求
  • 【Docker】容器简介和构建镜像
  • 18、Gemini-Pentest-v1
  • Oracle数据库的启动和关闭
  • 【区块链通用服务平台及组件】云链白泽区块链 baas 平台
  • 第142天: 内网安全-权限维持黄金白银票据隐藏账户C2 远控RustDeskGotoHTTP
  • Python-获取excel数据 - 成绩统计
  • Telephony VOLTE配置
  • 高度可定制的电竞鼠标,雷柏VT1 PRO MAX体验
  • ADTEC自动阻抗匹配器维修AMVG-2000-FY AMVG-1000-CD
  • 未来的去中心化网络:Web3与AI的深度融合探讨
  • 【组边际图】:附Origin详细画图流程
  • [笔记]电参数测量的现有方案[进行中...]
  • 分享基于PDF.JS的移动端PDF阅读器代码
  • 二个命令解决docker 拉取镜像超时的问题
  • PDF样本图册转换为一个链接,随时打开无需印刷