当前位置: 首页 > article >正文

【大模型基础】P2 Bag-of-Words

目录

  • 词袋模型 概述
  • 词袋模型 实例
    • 第1步 构建语料库
    • 第2步 对句子进行分词
    • 第3步 创建词汇表
    • 第4步 转换词袋表示
    • 第5步 计算余弦相似度
  • 词袋模型的局限性

词袋模型 概述

词袋模型,Bag-of-Words,是一种简单的文本表示方法,也是 NLP 中的一个经典模型。

它将文本中的词看作一个个独立的个体,不考虑它们在句子中的顺序,只关心每个词出现的频次。

e . g . e.g. e.g. 比如我们有两个句子

+ "我喜欢吃苹果"
+ "苹果是我喜欢的水果"

词袋模型会将这两个句子表示成如下向量:

+ {"我": 1, "喜欢": 1, "吃": 1, "苹果": 1}
+ {"苹果": 1, "是": 1, "我": 1, "喜欢": 1, "的": 1, "水果": 1}

而后,词袋模型通过比较两个向量之间的相似度,判断其关联性的强弱


词袋模型 实例

在这里插入图片描述

第1步 构建语料库

# 构建语料库
corpus = ["我特别特别喜欢看电影", 
          "这部电影真的是很好看的电影", 
          "今天天气真好是难得的好天气", 
          "我今天去看了一部电影", 
          "电影院的电影都很好看"]

第2步 对句子进行分词

使用 jieba 包对句子进行分词。

# 对句子进行分词
import jieba

corpus_tokenized = [list(jieba.cut(sentence)) for sentence in corpus]
corpus_tokenized

结果:

[['我', '特别', '特别', '喜欢', '看', '电影'],
 ['这部', '电影', '真的', '是', '很', '好看', '的', '电影'],
 ['今天天气', '真好', '是', '难得', '的', '好', '天气'],
 ['我', '今天', '去', '看', '了', '一部', '电影'],
 ['电影院', '的', '电影', '都', '很', '好看']]

第3步 创建词汇表

根据分词结果,创建该语料库的词汇表,其中每一个词对应一个编号。

# 创建词汇表
word_dict = {}
for sentence in corpus_tokenized:
    for word in sentence:
        if word not in word_dict:
            word_dict[word] = len(word_dict)

word_dict

结果:

{'我': 0,
 '特别': 1,
 '喜欢': 2,
 '看': 3,
 '电影': 4,
 '这部': 5,
 '真的': 6,
 '是': 7,
 '很': 8,
 '好看': 9,
 '的': 10,
 '今天天气': 11,
 '真好': 12,
 '难得': 13,
 '好': 14,
 '天气': 15,
 '今天': 16,
 '去': 17,
 '了': 18,
 '一部': 19,
 '电影院': 20,
 '都': 21}

第4步 转换词袋表示

由第三步可知,该词袋长度为 21,故对该语料库中5句话的每句话转换词袋表示。长度均为21,按照该词在该句中出现的次数表示为句向量。

# 根据词汇表将句子转换为词袋表示
bow_vectors = []
for sentence in corpus_tokenized:
    sentence_vector = [0] * len(word_dict)
    for word in sentence:
        sentence_vector[word_dict[word]] += 1
    bow_vectors.append(sentence_vector)
bow_vectors

结果:

[[1, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0],
 [1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0],
 [0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1]]

第5步 计算余弦相似度

余弦相似度(Cosine Similarity),可以衡量两个文本向量之间的相似性。其值在(-1,1)之间波动,1为最相似。

余弦相似度关注向量之间的角度,而非距离。而角度,能够更好地反映文本向量在概念空间中的相对方向和相似性。

# 计算余弦相似度
import numpy as np

def cosine_similarity(vec1, vec2):
    dot_product = np.dot(vec1, vec2)
    norm_a = np.linalg.norm(vec1)
    norm_b = np.linalg.norm(vec2)

    return dot_product / (norm_a * norm_b)

similarity_matrix = np.zeros((len(corpus), len(corpus)))
for i in range(len(corpus)):
    for j in range(len(corpus)):
        similarity_matrix[i][j] = cosine_similarity(bow_vectors[i], bow_vectors[j])

similarity_matrix

结果:

array([[1.        , 0.2236068 , 0.        , 0.40089186, 0.14433757],
       [0.2236068 , 1.        , 0.23904572, 0.23904572, 0.64549722],
       [0.        , 0.23904572, 1.        , 0.        , 0.15430335],
       [0.40089186, 0.23904572, 0.        , 1.        , 0.15430335],
       [0.14433757, 0.64549722, 0.15430335, 0.15430335, 1.        ]])

词袋模型的局限性

词袋模型逻辑清晰,实现简单,但是存在着一个致命的缺陷,那就是忽略了文本中的上下文信息。词袋模型无法捕捉单词之间的语义关系,因为单词在向量空间中的相对位置没有意义。


2024.09.07


http://www.kler.cn/a/300258.html

相关文章:

  • 51c~SLAM~合集1
  • P8738 [蓝桥杯 2020 国 C] 天干地支
  • Bash语言的函数实现
  • 深度学习-89-大语言模型LLM之AI应用开发的基本概念
  • PyTorch使用教程(8)-一文了解torchvision
  • 【自动控制原理】非线性系统 描述函数法 相平面法
  • C语言深入理解指针五(18)
  • python测试开发基础---threading
  • 随机数与随机数种子
  • java网络编程TCP通信实战:共享聊天室
  • Reduce:一款开源的短网址平台!!【送源码】
  • WEB渗透权限维持篇-映像劫持
  • Oracle start with connect BY 死循环
  • 凸优化学习(1)——什么是凸优化、凸集、凸函数
  • 2024.9.10 作业
  • 大数据-128 - Flink 并行度设置 细节详解 全局、作业、算子、Slot
  • 利用前缀信息解决子数组问题(上)
  • JavaScript变量
  • jupyter出错ImportError: cannot import name ‘np_utils‘ from ‘keras.utils‘ ,怎么解决?
  • 【网络安全 | 渗透工具-目录FUZZ】ffuf安装使用详细教程
  • 【python】OpenCV—Mask RCNN for Object Detection and Instance Segmentation
  • (BAT向)Java岗常问高频面试汇总:MyBatis 微服务 Spring 分布式 MySQL等
  • lancedb基础学习
  • k8s集群部署:建立第一个微服务-注册中心Eureka
  • 生动灵活,MegActor重磅升级!旷视科技发布MegActor-Σ:首个基于DiT的人像动画方法!
  • Android 15 正式发布到 AOSP ,来了解下新特性和适配需求