当前位置: 首页 > article >正文

Chainlit集成Langchain并使用通义千问实现和数据库交互的网页对话应用增强扩展(text2sql)

前言

我在上一篇文章中《Chainlit集成Langchain并使用通义千问实现和数据库交互的网页对话应用(text2sql)》 利用langchaincreate_sql_agent 创建一个数据库代理智能体,但是实测中发现,使用 create_sql_agent 在对话中,响应速度太慢了,数据的表越多,对话响应就越慢,这次本篇文章langchain中和数据库对话交互的另两种方式,SQLDatabaseChaincreate_sql_query_chain

SQLDatabaseChain

使用LangChain中的SQLDatabaseChain需要安装langchain_experimental,安装依赖命令如下:

pip install langchain
pip install langchain_experimental

SQLDatabaseChain和数据库的交互响应速度 处于 create_sql_agent create_sql_query_chain中间,其中create_sql_agent 智能体在交互过程中和AI做了多次交互,大致流程如下:先用AI判断问题和数据中表的相关性,查看相关表的设计表结构,利用AI生成sql查询语句,利用AI对生成的sql查询语句进行检查,利用AI对sql命令查询出来结构做最终回复。过程比较多,导致响应很慢,但是相对于其他两种方式来说,更智能,更严谨。SQLDatabaseChain既保持了一定智能性又提升了回复的速度。下面我用chainilt作为一个网页对话的UI界面,利用SQLDatabaseChain实现一个和数据库对话的网页应用示例如下:

本次使用postgres数据库进行对话

在项目根目录下,创建一个app.py文件,代码如下:

import os
import time
from io import BytesIO

import chainlit as cl
import dashscope
from langchain_community.llms import Tongyi
from langchain_community.utilities import SQLDatabase
from langchain_experimental.sql import SQLDatabaseChain


@cl.on_chat_start
async def on_chat_start():
    db = SQLDatabase.from_uri("postgresql+psycopg2://username:password@ip:port/dbname")
    llm = Tongyi(model='qwen-plus', verbose=True)
    db_chain = SQLDatabaseChain.from_llm(llm, db)
    cl.user_session.set("db_chain", db_chain)


@cl.on_message
async def on_message(message: cl.Message):
    start_time = time.time()
    db_chain = cl.user_session.get("db_chain")
    result = db_chain.invoke({"query": message.content})
    print(f"代码执行时间: {time.time() - start_time} 秒")
    await cl.Message(content=result['result']).send()
  • 修改代码中的数据库连接信息为你自己的
  • env文件中配置dashscopekey ,不知道的话,看我之前的文章
  • 实测中把qwen-plus改为qwen-max 或者其他更智能的AI,回答数据的准确度更高

create_sql_query_chain

create_sql_query_chainlangchain中和数据库查询最快的方式,他只是负责根据用户问题,生成查询sql查询语句一个功能。不太智能,但是足够灵活,用户可以自定义其他判断和最终回复的逻辑。下面我用create_sql_query_chain结合AI回复实现了一个简单数据库对话网页应用,速度是目前方式中最快的。

在项目根目录下创建app.py文件,代码如下:

import os
import time
from io import BytesIO

import chainlit as cl
import dashscope
from langchain.chains.sql_database.query import create_sql_query_chain
from langchain_community.llms import Tongyi
from langchain_community.utilities import SQLDatabase
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import PromptTemplate

db = SQLDatabase.from_uri("postgresql+psycopg2://username:password@ip:port/dbname")
llm = Tongyi(model='qwen-plus', verbose=True)


@cl.cache
def extract_sql_query(text):
    # 查找 'SQLQuery:' 的位置
    start_index = text.find('SQLQuery:')
    # 如果找到了 'SQLQuery:',则从其后的位置开始截取字符串
    if start_index != -1:
        # 'SQLQuery:' 后面的第一个字符的位置
        start_of_query = start_index + len('SQLQuery:') + 1
        # 返回 'SQLQuery:' 后面的字符串
        return text[start_of_query:].strip()
    else:
        # 如果没有找到 'SQLQuery:',则返回空字符串
        return text


@cl.step(type="tool", name="数据库查询")
async def db_query(message: cl.Message):
    db_chain = cl.user_session.get("db_chain")
    result = ""
    async for chunk in db_chain.astream({"question": message.content}):
        result = result.join(chunk)
    print("db_chain:" + result)
    sql = None
    if 'SELECT' in result:
        sql = extract_sql_query(result)
        print("自然语言转SQL:" + sql)
        res = db.run(sql)
        print("查询结果:", res)
        return sql, res
    if not sql:
        await cl.Message(content=result).send()
        return None, None


@cl.on_chat_start
async def on_chat_start():
    answer_prompt = PromptTemplate.from_template(
        """Given the following user question, corresponding SQL query, and SQL result, answer the user question. 
        用中文回答最终答案
        Question: {question}
        SQL Query: {query}
        SQL Result: {result}
        Answer: """
    )
    answer_chain = answer_prompt | llm | StrOutputParser()
    cl.user_session.set("answer_chain", answer_chain)
    db_chain = create_sql_query_chain(llm=llm, db=db)
    cl.user_session.set("db_chain", db_chain)


@cl.on_message
async def on_message(message: cl.Message):
    start_time = time.time()
    runnable = cl.user_session.get("answer_chain")
    msg = cl.Message(content="")
    sql, res = await db_query(message)
    if res:
        async for chunk in runnable.astream({"question": message.content, "query": sql, "result": res}):
            await msg.stream_token(chunk)
        print(f"代码执行时间: {time.time() - start_time} 秒")
        await msg.update()

  • 修改代码中的配置为你自己的数据库连接信息
  • 代码中的AI模型使用的是通义千问的qwen-plus
  • 大致原理使用create_sql_query_chain 根据用户问题生成查询sql,对返回的结构进行提取,获得最终sql,使用db.run方法执行最终sql。将sql执行结果sql查询语句、和用户问题,发给AI做最终回答。
  • 这种方式的弊端,当用户提问的问题和数据库无关时,报错的概率更大,需要进一步处理。对于create_sql_query_chain生成sql命令,没有做进一步校验,默认他是正确的,虽然节省的时间,也提升了报错的概率
  • db = SQLDatabase.from_uri("sqlite:///demo.db") 中的demo.db文件是上面sqlite_data.py文件执行后生成的
  • llm = Tongyi(model='qwen-plus', verbose=True)verbose 意思是是否打印详细输出
  • 在底层,LangChain 使用 SQLAlchemy 连接到 SQL 数据库。因此,SQLDatabaseChain 可以与 SQLAlchemy 支持的任何 SQL 方言一起使用,例如 MS SQL、MySQL、MariaDB、PostgreSQL、Oracle SQL、DatabricksSQLite。有关连接到数据库的要求的更多信息,请参阅 SQLAlchemy 文档。

连接mysql代码示例:

# 连接 MySQL 数据库
db_user = "root"
db_password = "12345678"
db_host = "IP"
db_port = "3306"
db_name = "demo"
db = SQLDatabase.from_uri(f"mysql+pymysql://{db_user}:{db_password}@{db_host}:{db_port}/{db_name}")

运行应用程序

要启动 Chainlit 应用程序,请打开终端并导航到包含的目录app.py。然后运行以下命令:

 chainlit run app.py -w   
  • -w标志告知 Chainlit 启用自动重新加载,因此您无需在每次更改应用程序时重新启动服务器。您的聊天机器人 UI 现在应该可以通过http://localhost:8000访问。
  • 自定义端口可以追加--port 80

启动后界面如下:

在这里插入图片描述
在这里插入图片描述

  • 目前存在问题没办法流式输出,因为流公式返回的结果是ai执行sql的过程,最终返回的结果文本是流式返回的最后一段。
  • 执行时间有点长,提出问题后,一般5秒左右,才返回。
  • 目前支持sql查询相关的操作,不支持数据库新增、修改、删除的操作

相关文章推荐

《Chainlit快速实现AI对话应用的界面定制化教程》
《Chainlit接入FastGpt接口快速实现自定义用户聊天界面》
《使用 Xinference 部署本地模型》
《Fastgpt接入Whisper本地模型实现语音输入》
《Fastgpt部署和接入使用重排模型bge-reranker》
《Fastgpt部署接入 M3E和chatglm2-m3e文本向量模型》
《Fastgpt 无法启动或启动后无法正常使用的讨论(启动失败、用户未注册等问题这里)》
《vllm推理服务兼容openai服务API》
《vLLM模型推理引擎参数大全》
《解决vllm推理框架内在开启多显卡时报错问题》
《Ollama 在本地快速部署大型语言模型,可进行定制并创建属于您自己的模型》


http://www.kler.cn/a/301755.html

相关文章:

  • RabbitMQ教程:路由(Routing)(四)
  • spring-cache concurrentHashMap 自定义过期时间
  • python的matplotlib实现数据分析绘图
  • 微信小程序 === 使用腾讯地图选点
  • 坚果云·无法连接服务器(无法同步)
  • Fish Agent V0.13B:Fish Audio的语音处理新突破,AI语音助手的未来已来!
  • 高教社杯数模竞赛特辑论文篇-2015年D题:众筹筑屋规划方案设计
  • AI教你学Python 第1天:Python简介与环境配置
  • Python和MATLAB及C++信噪比导图(算法模型)
  • 解开密码锁的最少次数
  • cesium.js 入门到精通(1)
  • 高级java每日一道面试题-2024年9月08日-前端篇-JS的执行顺序是什么样的?
  • php实现kafka
  • 一篇文章,讲清SQL的 joins 语法
  • Java贪心算法每日一题——179.最大数
  • 【QT】Qt窗口
  • Pr:序列设置 - VR 视频
  • 【区块链 + 基层治理】社区防疫管理平台 | FISCO BCOS应用案例
  • 404 error when doing workload anlysis using locust on OpenAI API (GPT.35)
  • 【深度学习 Pytorch】深入浅出:使用PyTorch进行模型训练与GPU加速
  • 泛零售行业的营销自动化现状如何?
  • Vue3+vite使用i18n国际化
  • 军事目标无人机视角检测数据集 3500张 坦克 带标注voc
  • 剖析 MySQL 数据库连接池(C++版)
  • Docker简介在Centos和Ubuntu环境下安装Docker
  • 详细介绍 Redis 列表的应用场景