当前位置: 首页 > article >正文

小众创新组合!LightGBM+BO-Transformer-LSTM多变量回归交通流量预测(Matlab)

小众创新组合!LightGBM+BO-Transformer-LSTM多变量回归交通流量预测(Matlab)

目录

    • 小众创新组合!LightGBM+BO-Transformer-LSTM多变量回归交通流量预测(Matlab)
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现LightGBM+BO-Transformer-LSTM多变量回归预测,LightGBM+BO-Transformer-LSTM/LightGBM+Bayes-Transformer-LSTM(程序可以作为一区级论文代码支撑,目前尚未发表);

2.LightGBM用于提取数据关键特征后输入BO-Transformer-LSTM模型之中,贝叶斯优化参数为:学习率,LSTM隐含层节点,正则化参数,运行环境为Matlab2023b及以上;

3.数据集excel,交通流数据,输入多个特征,输出单个变量,多变量回归预测,main.m为主程序,运行即可,所有文件放在一个文件夹;

4.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价。

数据集
在这里插入图片描述

交通流量预测中的应用具有以下重要意义。
交通管理优化:交通流量预测是交通管理和规划中的关键环节。通过准确预测交通流量,交通管理者可以更好地调整交通信号、路线规划和交通管制,以提高道路利用率和减少交通拥堵。
城市规划:在城市规划领域,交通流量预测可以帮助规划者更好地了解城市交通流量的分布和趋势,从而指导城市道路建设、公共交通规划等工作。
智能交通系统:随着智能交通系统的发展,多变量回归在交通流量预测中的应用变得更加广泛。通过结合各种数据源(如交通摄像头、传感器数据、气象数据等),可以实现更准确的交通流量预测。
数据驱动决策:多变量回归可以帮助政府和交通管理部门做出基于数据的决策。通过分析历史数据和不同因素对交通流量的影响,可以制定更有效的交通管理策略。
环境保护:交通流量的准确预测也有助于减少交通拥堵对环境的影响。通过优化交通流量管理,可以减少车辆排放,改善空气质量。

程序设计

  • 完整程序和数据获取方式私信博主回复小众创新组合!LightGBM+BO-Transformer-LSTM多变量回归交通流量预测(Matlab)



%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据
res = xlsread('数据集.xlsx');

%%  加载工具箱
loadlibrary('lib_lightgbm.dll', 'c_api.h')

%%  数据分析
num_size = 0.7;                              % 训练集占数据集比例
outdim = 1;                                  % 最后一列为输出
num_samples = size(res, 1);                  % 样本个数
%res = res(randperm(num_samples), :);        % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度

%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  矩阵转置
p_train = p_train'; p_test = p_test';
t_train = t_train'; t_test = t_test';

%%  加载数据到 GBM
pv_train = lgbmDataset(p_train);
setField(pv_train, 'label', t_train);


参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/127931217
[2] https://blog.csdn.net/kjm13182345320/article/details/127418340


http://www.kler.cn/a/302002.html

相关文章:

  • 回归预测 | MATLAB实现CNN-SVM多输入单输出回归预测
  • 硬件工程师面试题 21-30
  • 抖音短视频矩阵系统源码开发全流程解析
  • 2024年12月 Scratch 图形化(二级)真题解析#中国电子学会#全国青少年软件编程等级考试
  • 建立一个Macos载入image的实例含界面
  • 汇编基础DOSBox的使用
  • 计算两个数据集之间的皮尔森相关系数与其p值 scipy.stats.pearsonr()
  • 解决 Ubuntu 20.04 上 Fail2Ban 启动失败问题:指定 systemd 后端
  • nnunet报错 the direction does not match between the images
  • STM32-HAL库开发快速入门
  • React基础
  • [001-02-001]. 第07-03节:理解线程的安全问题
  • 空间物联网中的大规模接入:挑战、机遇和未来方向
  • 基于 onsemi NCV78343 NCV78964的汽车矩阵式大灯方案
  • Linux下进程间的通信--共享内存
  • 计算机视觉的应用33-基于双向LSTM和注意力机制融合模型的车辆轨迹预测应用实战
  • 五分钟让你学会threeJS
  • git 远程分支同步本地落后的有冲突的分支
  • Redis常用操作及springboot整合redis
  • web基础之文件上传
  • Kotlin 中的 `flatMap` 方法详解
  • wifiip地址可以随便改吗?wifi的ip地址怎么改变
  • Brave编译指南2024 Windows篇:安装Git(四)
  • FloodFill算法
  • 语言模型微调:提升语言Agent性能的新方向
  • HarmonyOS开发之使用Picker(从相册选择图片),并且通过Swiper组件实现图片预览