当前位置: 首页 > article >正文

大模型的第一个杀手级应用场景出来了

大家终于都意识到大模型首先改变的是软件行业自己,而软件的根基是代码生成。代码生成第一波就是AI辅助开发,这个会是大模型第一个杀手级应用。大家苦苦逼问自己的大模型杀手级应用,为什么会是辅助编程,这里说下什么:

  1.  必须吃狗粮,颠覆性技术连自己的领域都颠覆不了,那还叫啥颠覆性技术。

  2. 允许出错。AI辅助开发具有良好的容错率,允许出错,这个相当重要,也是当前大模型在其他领域目前难以落地的根本原因。

  3. 市场规模大,整个软件市场是千亿到万亿规模的。

  4. 初始客群接受度高。AI辅助编程的第一波客群程序员,技术人员群体规模大,对新技术敏感,接受度高,github copilot 这种处于非常初级的产品就获得百万付费用户(月流水至少两亿)。 

这也是为什么我一直致力于代码生成的工作,并且愿景比 Cursor这类大的多,不只是个IDE,这个我们后面再说。

AI辅助编程流派

先说下当前AI辅助编程的流派:

1. 命令行交互式,代表为 auto-coder.chat,aider,mentat,plandex 等。

2. IDE 集成式,代表为 cursor,codium 等,此外还有插件子派,比如 auto-coder.chat, claude-dev 等。

3. Web IDE 为主,代表为 devin, phind(这个比较简陋),以及在 git 内置的一些编程辅助工具。

这里没有提及github copilot 等类似产品,是因为我认为他们不属于AI编程...hmmm... 我只能说是更智能的代码补全工具。

目前真正能落地是两个,一个是命令行交互,一个是IDE 集成。 今天会分别以 auto-coder.chat 和 cursor 来作为两派的代表来对比。

IDE派的优点:

  1. 对于程序员而言,大家熟悉度更高,门槛更低。

  2. 可以在 IDE 交互上做到极致的交互体验,所见即所得。

  3. 开箱即用,下载IDE,打开即可使用。

  4. IDE 提供了一些交互button,比如运行项目,debug项目,这个是其他工具很难替代的。

IDE派的缺点:

  1. Cursor为了追求极致的体验,没有用插件的方式,而是直接二次开发,导致IDE绑定。

  2. 适合人机交互,但难以自动化。

  3. 交互界面在复杂场景下,容易繁琐,想设计好不容易,用户也有一定的学习成本。大家用compser 这种就会发现这个问题。

另外,必须提的一点:大家觉得IDE 交互简单其实是因为大家已经前置学习了 IDE(从你接触编程开始的第一件事就是学习IDE)。IDE 就是图片界的Photoshop 是一款专业软件,实际门槛并不低(但因为前面的原因感觉门槛低)。

命令行流派的优点:

  1.  兼容所有IDE(所有IDE都有内置terminal),甚至不需要IDE

  2.  对于纯萌新而言,实际入门门槛比IDE低(参考前面我特别提醒的点)

  3.  交互一旦学习了以后,效率是远高于IDE的(这点和历史一样)

比如,当你看到一个github 项目,三步即可添加新功能特性:

  1.  clone 项目到本地

  2. 进入目录运行 auto-coder.chat

  3. /coding <描述你的需求>

会比 IDE 更轻松。

命令行流派的缺点:

  1. 需要用户适当记住一些指令,比如 /coding /chat 等。但是随着大模型越来越强,用户可能只需要一两个指令即可。

  2. 很多人对命令行略显恐惧。但实际上现在的命令行非常强大,不输编辑器(唯一的缺点是对鼠标支持不好)

  3. 对于有代码阅读需求的,或者需要手工做修改,或者要做代码debug,那么还是需要 IDE 配合。

流派融合

看完了上面的比对,你肯定在纠结,那到底应该用哪个呢?亦或者你心里早就有谱了,我就是用IDE,或者我就是用 Terminal。Naive! 成年人需要做选择题么?成年人应该是:我都要!

所以我今天特意发了这么一个文案:

免费版 cursor + auto-coder.chat = cursor pro
付费版 cursor + auto-coder.chat = cursor pro NEXT

其他你喜欢的IDE工具:

Vscode + github copilot/comate/灵码  + auto-coder.chat = cursor pro
Idea + github copilot/comate/灵码 auto-coder.chat = cursor pro
Vim + auto-coder.chat = cursor pro

然后我发现也有不少用户已经这么组合来用了,果然,"你再快能快的过用户"?

为什么要这么组合使用呢?因为 1+1 大于2么,各自弥补对方的缺点,提升自己优点。我推荐 cursor + auto-coder.chat。

cursor 可以作为 GitHub copilot 的更好的替代品。 而auto-coder.chat 则有更好的多文件编辑能力,算是更好的 composer。 

Cursor 深度剖析,为什么是极致版的 github copilot

重度使用了 cursor 两天。他的迭代路径也很清晰,从早期的copilot (tab tab) 到支持可以参考多个文件针对 “单文件自动修改和合并”(apply)。其中第二个能力是当前 github copilot 没有的,github copilot chat框里的代码没有办法直接合并到文件里,你只能拷贝黏贴。cursor 的单文件修改交互体验做到很极致,那个酷炫的apply 效果很容易勾动程序员的小心脏,但做的再好,也只是一个编辑器辅助功能,程序员很爽,但天花板也很明显,效率提升有限,毕竟还是程序员在手写代码(tab tab) 或者只能针对一个文件做修改(apply)。尽管如此,体验还是吊打 GitHub copilot的。

加上sonnet 3.5 理解能力很强,而且context相对来说比较简单,基本生成的效果相当好。

很多同学看到这,就觉得,很好了呀,为啥不够?代码都能自动写,自动合并了,还有啥可以提升的呀?

注意,实际场景是,当你想添加一个功能需求的时候,你可能需要修改一组相关联的文件,修改多个文件后,你还需要确保他们可以正常的协同工作。这才是最有难度和消耗时间的地方。

程序员会经常说: 

1. 哦,我漏了某个地方忘了改了,导致系统错误,

2. 亦或者说,哦 我改了一个地方,结果影响到另外一个地方了。

这是最常见的情况,也是最难,效率最低,也是bug的温床

所以未来cursor的希望,就是他们新推出的composer,composer默认是关闭的,需要你去单独开启(新版本据说已经开启了),估计很多人就没体验到。这个功能让cursor迈向了支持多文件新建,修改和合并。这个是从功能迈向“需求”的关键,可以针对现有代码实现一个完整的功能需求。整体效果也不错。

cusor 里composer 的界面是这样的:

72a4b283afb2a4478eb61e5ebeb1fe4d.png

和原有的功能是相当割裂的,新启动了一套窗口。我实测下来,他还是比较适合新增一些文件,对于比较复杂的文件修改,还是不太行,合并不进去。我估计是因为他们采用的是 wholefile + diff 算法来做的合并,但目前看效果并不理想。这个我会在后面的案例里详细说明。

这个发展历程和我之前想的差不多,之前我说 cursor走了很多“弯路”。auto-coder.chat 从项目之初,就是要走需求驱动,根据需求自动实现多文件新增修改,相当于第一版我们就做了个composer。我们在 Opus 时代就已经发现可以很好的支撑了多文件修改能力了。

总之 cursor 发展是好事,极大的降低了 auto-coder.chat 的布道门槛,增大了行业的蛋糕。

auto-coder.chat 深度剖析,为什么可以作为极致版的 cursor composer

auto-coder.chat 从一开始就是支持“多文件修改”,面向需求的的代码辅助工具。

对于代码补全和简单的代码续写生成亦或者手动编写代码,debug调试等,用户可以搭配 GitHub copilot ,通义灵码,comate或者cursor来完成。

auto-coder.chat 在 cursor 等IDE中的使用也极度简单,比把大象装进冰箱还少一步:

1. 打开IDE terminal, 输入 auto-coder.chat 命令

2. 输入 /coding <描述你的需求>

两步相当于给你带来了真正生产级别的 composer 功能。

来个真实的小案例

昨天我正好想给auto-coder.chat 加上国际化功能。修改之前我们可以看到,所有交互信息都是直接写死在代码里的(英文):

a95c35434275013d8f7994fce6aae49f.png

现在我们希望把系统初始化过程中,交互和输出给用户的信息都要支持中英文。基本思路就是,

  1. 新建一个python文件,里面放中英文文本,并且提供 get_message 函数方便外部使用。

  2. 修改所有 chat_auto_coder.py 文件中所以打印信息的部分,采用get_message。

相信很多程序员对这个事都记忆犹新,大量的苦力活,而且还容易错漏,要反复测。

cursor composer 的艰难尝试

我一开始采用 cursor 的 composer 功能来完成。下面是我尝试和他的沟通:

9501854660e872c815a3746cc50db94f.png

这是新增的文件内容:

5b09b44e18fc9076ed5cf500444908cf.png

这是他修改的文件内容:

b692c1f6345331fe78c0817896a13c7e.png

很遗憾:

  1. 新增内容的路径没有放对,放到了项目根目录,说明对目录理解还是不够。

  2. 修改的内容,无法合并到原有代码(原有代码大概有两千多行)。

我尝试了三次,你看到是最后一版,依然没有成功。

auto-coder.chat 的手到擒来

就一句话,没有更多:

1904664d82d7ea470d892d425aac05a1.jpeg

然后在准确的位置新增了一个文件:

ffb7bb7e3c8964ae9ec3058b5808501a.jpeg

修改了一个已经拥有2000多行代码的文件:

a6fd69de257e8f0fdbf2364700b10e1b.jpeg

大概修改了十几个地方,从diff 可以看出,没有一处遗漏。

最后实现的效果:

4decb36d4fa1a6dd57382fd6be520ff5.jpeg

依葫芦画瓢改了其他地方:

e5ffac7a06b7be01077ccec3bc8e3ea3.jpeg

顺利实现了我的需求,我昨天也顺利发版了 auto-coder==0.1.165 版本。

一个小总结

  1. 和人比,如果是人去做这件事,虽然没啥难度,但必然是漏了这里,漏了哪里,基本上 auto-coder.chat 几分钟可以搞好的事情,人需要花半天到一天。

  2. 和 cursor composer 比,它没有运行成功,并且它还有繁琐的交互的。而auto-coder.chat 的思想是,快速合并,快速/reivew, 快速 /revert 或者 go on。

auto-coder.chat 不仅仅是 auto-coder.chat

如果你觉得 auto-coder.chat 仅仅是一个命令行工具就Naive了,给大家看一张图:

10b4b8bd0a3110b3e1423b56224853dc.png

auto-coder.chat 只是水上的冰山,我们在下面做了大量工作,从而支持各种形态的辅助编程产品,提供的API接口也支持企业将自动化编程接近自己的 CICD 开发流程中。

此外,我们还提供了最好的编程知识库集成,以及类似 cursor directory 的 auto-coder.chat lib 功能。

想了解更多,欢迎点击 "原文阅读"。


http://www.kler.cn/a/302533.html

相关文章:

  • 【LeetCode】【算法】5. 最长回文子串
  • 使用CNN进行验证码识别:深度学习与图像预处理教程
  • 动态规划问题-删除并获得点数(Java实现)
  • [CKS] K8S Dockerfile和yaml文件安全检测
  • DAY112代码审计PHP开发框架POP链利用Yii反序列化POP利用链
  • 分布式锁实践方案
  • SQL的优化和引擎有哪些
  • Win11 频繁蓝屏重启
  • GIS应届生不考研,不考公,不考编,未来要怎么安排?
  • 【规范】Git Commit 约定式提交规范
  • MySQL表操作
  • BClinux docker安装kong和konga
  • 跨系统环境下LabVIEW程序稳定运行
  • 基于SpringBoot+Vue的瑜伽体验课预约管理系统
  • 《ORANGE‘s 一个操作系统的实现》-- ubuntu14.04下bochs2.3.5的配置与使用
  • 【JAVA入门】Day41 - 字节缓冲流和字符缓冲流
  • C++操作符重载实例(独立函数)
  • 《网络故障处理案例:公司网络突然中断》
  • 详说 类和对象
  • element form rules 验证数组对象属性时如何写判断规则
  • 测试驱动开发(TDD)学习分享-下篇
  • Python知识点:如何使用Python进行图像批处理
  • MySQL中的约束
  • 系统分析师10:知识产权与标准化
  • 大模型中的多模态概念指的是什么
  • (计算机网络)应用层