当前位置: 首页 > article >正文

深入理解全连接层:从线性代数到 PyTorch 中的 nn.Linear 和 nn.Parameter

文章目录

这篇文章会从基础的一个数学概念到对应的代码实现,你将了解到:

  • 为什么nn.Parameter()接受 ( out_features , in_features ) (\text{out\_features}, \text{in\_features}) (out_features,in_features)作为参数?
  • 为什么不是torch.matmul(self.weight, x) + self.bias
  • 如何使用torch.matmul()@F.linear() 去等价地实现nn.Linear()的输出。

数学概念(全连接层,线性层)

线性变化是数学中一个基础的概念,它描述了如何通过线性变换将输入映射到输出。在线性代数中,线性变化通常表示为矩阵乘法。在神经网络中,线性层的核心就是实现这样的矩阵运算。

数学公式:

给定一个输入向量 x ∈ R n \mathbf{x} \in \mathbb{R}^n xRn 和一个输出向量 y ∈ R m \mathbf{y} \in \mathbb{R}^m yRm,线性变化通过矩阵 W ∈ R m × n \mathbf{W} \in \mathbb{R}^{m \times n} WRm×n 和偏置项 b ∈ R m \mathbf{b} \in \mathbb{R}^m bRm 进行变换,其公式为:
y = W x + b \mathbf{y} = \mathbf{W} \mathbf{x} + \mathbf{b} y=Wx+b

  • W \mathbf{W} W:是权重矩阵,维度为 m × n m \times n m×n,它决定了输入向量如何线性变换到输出空间;
  • x \mathbf{x} x:是输入向量,维度为 n n n,表示特征数据;
  • b \mathbf{b} b:是偏置向量,维度为 m m m,用来调整线性变换的输出;
  • y \mathbf{y} y:是输出向量,维度为 m m m,是变换后的结果。

例子:

如果输入向量 x \mathbf{x} x 有 3 个特征,输出向量 y \mathbf{y} y 有 2 个特征,则权重矩阵 W \mathbf{W} W 的形状为 2 × 3 2 \times 3 2×3。假设:
W = [ 1 2 3 4 5 6 ] , x = [ 1 2 3 ] , b = [ 0 1 ] \mathbf{W} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} W=[142536],x= 123 ,b=[01]
线性变换计算为:
y = W x + b = [ 1 2 3 4 5 6 ] [ 1 2 3 ] + [ 0 1 ] = [ 14 32 ] + [ 0 1 ] = [ 14 33 ] \mathbf{y} = \mathbf{W} \mathbf{x} + \mathbf{b} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 14 \\ 32 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 14 \\ 33 \end{bmatrix} y=Wx+b=[142536] 123 +[01]=[1432]+[01]=[1433]
矩阵运算过程:
[ 1 2 3 4 5 6 ] [ 1 2 3 ] = [ ( 1 × 1 ) + ( 2 × 2 ) + ( 3 × 3 ) ( 4 × 1 ) + ( 5 × 2 ) + ( 6 × 3 ) ] = [ 14 32 ] \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} (1 \times 1) + (2 \times 2) + (3 \times 3) \\ (4 \times 1) + (5 \times 2) + (6 \times 3) \end{bmatrix} = \begin{bmatrix} 14 \\ 32 \end{bmatrix} [142536] 123 =[(1×1)+(2×2)+(3×3)(4×1)+(5×2)+(6×3)]=[1432]

nn.Linear()

nn.Linear() 会自动创建一个权重矩阵(Weight)和偏置项(Bias),并将它们应用到输入上。

代码示例:

import torch
import torch.nn as nn

# 定义一个输入为3,输出为2的线性层
linear_layer = nn.Linear(3, 2)

# 打印权重矩阵和偏置项
print("权重矩阵 W:")
print(linear_layer.weight)

print("偏置项 b:")
print(linear_layer.bias)

# 模拟输入向量
input_vector = torch.tensor([1.0, 2.0, 3.0])
output_vector = linear_layer(input_vector)
print("输出向量 y:")
print(output_vector)

image-20240912221728559

在这里,nn.Linear(3, 2) 创建了一个 2×3 的权重矩阵和一个 2 维的偏置向量。通过 linear_layer(input_vector),可以直接获得输入向量经过线性变换后的输出。

nn.Parameter()

在 PyTorch 中,nn.Linear() 自动处理了权重和偏置项的初始化和更新,但有时你可能希望对这些参数自定义一些操作,比如 LoRA。这时,我们可以使用 nn.Parameter() 来自定义权重和偏置,其实 nn.Linear() 本身就是使用的nn.Parameter(),感兴趣的话可以看官方源码。

以自定义线性层为例:

class CustomLinearLayer(nn.Module):
    def __init__(self, input_dim, output_dim):
        super(CustomLinearLayer, self).__init__()
        # 使用 nn.Parameter 手动定义权重和偏置
        self.weight = nn.Parameter(torch.randn(output_dim, input_dim))
        self.bias = nn.Parameter(torch.randn(output_dim))

    def forward(self, x):
        # 手动实现线性变换 y = Wx + b
        return torch.matmul(x, self.weight.T) + self.bias

# 使用自定义的线性层
custom_layer = CustomLinearLayer(3, 2)
output = custom_layer(input_vector)
print(output)

image-20240912222625609

在看完代码后,你可能会产生两个疑惑:

Q

1. 为什么 self.weight 的权重矩阵 shape 使用 ( out_features , in_features ) (\text{out\_features}, \text{in\_features}) (out_features,in_features)而不是 ( in_features , out_features ) (\text{in\_features}, \text{out\_features}) (in_features,out_features)?

这正是我写这篇博客的原因,接下来我们详细解释这个问题。

让我们重新使用 in_features \text{in\_features} in_features out_features \text{out\_features} out_features来重现之前的数学定义:

对于输入向量 x ∈ R in_features \mathbf{x} \in \mathbb{R}^{\text{in\_features}} xRin_features,全连接层的输出为:

y = W x + b \mathbf{y} = W\mathbf{x} + \mathbf{b} y=Wx+b

其中:

  • W ∈ R out_features × in_features W \in \mathbb{R}^{\text{out\_features} \times \text{in\_features}} WRout_features×in_features 是权重矩阵,
  • b ∈ R out_features \mathbf{b} \in \mathbb{R}^{\text{out\_features}} bRout_features 是偏置项。

在线性变换中,输入向量 x \mathbf{x} x 的维度是 in_features \text{in\_features} in_features,而输出向量 y \mathbf{y} y 的维度是 out_features \text{out\_features} out_features。根据矩阵乘法的规则,要将输入 x \mathbf{x} x 映射到输出 y \mathbf{y} y,权重矩阵 W W W 的形状应该是 ( out_features , in_features ) (\text{out\_features}, \text{in\_features}) (out_features,in_features),因为矩阵乘法中 W x W\mathbf{x} Wx的维度要求是:

( out_features × in_features ) × ( in_features × 1 ) = ( out_features × 1 ) (\text{out\_features} \times \text{in\_features}) \times (\text{in\_features} \times 1) = (\text{out\_features} \times 1) (out_features×in_features)×(in_features×1)=(out_features×1)

这保证了输出 y \mathbf{y} y 的维度是 out_features \text{out\_features} out_features

如果权重矩阵的形状是 ( in_features , out_features ) (\text{in\_features}, \text{out\_features}) (in_features,out_features),矩阵乘法的维度将不匹配,无法实现线性变换。

现在是不是感觉清晰了?不要 nn.Linear(in_feature, out_feature) 用多了就将权重矩阵当作是 ( in_features , out_features ) (\text{in\_features}, \text{out\_features}) (in_features,out_features)遗忘了线性代数的概念,数学才是这一切的基石。

2. 为什么是torch.matmul(x, self.weight.T) + self.bias 而不是torch.matmul(self.weight, x) + self.bias?

主要原因还是在于 输入张量 x 的形状矩阵乘法规则

一般来说,模型的输入 x 实际上并不是 ( in_features , 1 ) (\text{in\_features}, 1) (in_features,1),而是 ( batch_size , in_features ) (\text{batch\_size}, \text{in\_features}) (batch_size,in_features),而权重矩阵 self.weight 的形状是 ( out_features , in_features ) (\text{out\_features}, \text{in\_features}) (out_features,in_features)​,我们需要实现的线性变换是:
y = W x + b y = W x + b y=Wx+b
根据矩阵乘法规则,第一个矩阵的列数必须等于第二个矩阵的行数,这意味着我们不能直接计算 torch.matmul(self.weight, x),因为这样会导致维度不匹配:

  • self.weight 形状为 ( out_features , in_features ) (\text{out\_features}, \text{in\_features}) (out_features,in_features)x 形状为 ( batch_size , in_features ) (\text{batch\_size}, \text{in\_features}) (batch_size,in_features)
  • torch.matmul(self.weight, x) 的维度计算规则将要求 x 的形状为 ( in_features , batch_size ) (\text{in\_features}, \text{batch\_size}) (in_features,batch_size),但这与模型的输入不匹配。

因此,正确的矩阵乘法应该是 torch.matmul(x, self.weight.T),其中 self.weight.T 表示 self.weight 的转置矩阵,此时的形状为 ( in_features , out_features ) (\text{in\_features}, \text{out\_features}) (in_features,out_features)

这样,torch.matmul(x, self.weight.T) 的维度计算为:

( batch_size , in_features ) × ( in_features , out_features ) = ( batch_size , out_features ) (\text{batch\_size}, \text{in\_features}) \times (\text{in\_features}, \text{out\_features}) = (\text{batch\_size}, \text{out\_features}) (batch_size,in_features)×(in_features,out_features)=(batch_size,out_features)

这就得到了正确的输出形状 ( batch_size , out_features ) (\text{batch\_size}, \text{out\_features}) (batch_size,out_features)

3. 为什么不直接设置self.weight = nn.Parameter(torch.randn(input_dim, output_dim))

这样不就可以不转置直接使用torch.matmul(x, self.weight)了吗?的确如此,或许是因为 ( out_features , in_features ) (\text{out\_features}, \text{in\_features}) (out_features,in_features) 对于矩阵运算 W x W\mathbf{x} Wx 来讲更符合直觉吧。

计算过程的细分:torch.matmul() vs @ 运算符

在 PyTorch 中,torch.matmul() 用于实现矩阵乘法,而 @ 是其简洁的符号形式,是 Python 的语法糖,二者在功能上是等价的。

示例代码:

import torch

# 定义权重矩阵 W 和输入向量 input_vector
W = torch.tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
input_vector = torch.tensor([1.0, 2.0, 3.0])

# 使用 torch.matmul 实现矩阵乘法
result1 = torch.matmul(W, input_vector)

# 使用 @ 运算符
result2 = W @ input_vector

print("使用 torch.matmul 计算的结果:")
print(result1)

print("使用 @ 运算符计算的结果:")
print(result2)

结果:

image-20240912233355773

使用 F.linear()

PyTorch 提供了 F.linear() 作为函数式接口,它与 nn.Linear() 类似,但不需要创建一个线性层对象。F.linear() 可以接受线性层的权重和偏置作为输入。

示例代码:

import torch.nn.functional as F

# 使用 F.linear 进行线性变换
output = F.linear(input_vector, linear_layer.weight, linear_layer.bias)
print(output)

image-20240912233501651


http://www.kler.cn/a/302554.html

相关文章:

  • zabbix搭建钉钉告警流程
  • MySQL与Oracle对比及区别
  • 【mysql】使用宝塔面板在云服务器上安装MySQL数据库并实现远程连接
  • 豆瓣均分9:不容错过的9本大模型入门宝藏书籍,非常详细收藏我这一篇就够了
  • 【前端学习指南】Vue computed 计算属性 watch 监听器
  • 用vscode编写verilog时,如何有信号定义提示、信号定义跳转(go to definition)、模块跳转这些功能
  • Unity Shader实现简单的各向异性渲染(采用各向异性形式的GGX分布)
  • 优化销售流程:免费体验企元数智小程序合规分销系统!
  • Idea 2021.3 破解 window
  • vue3常见的bug 修复bug
  • 力扣每日一题:1372.二叉树中的最长交错路径
  • 腾讯云2024年数字生态大会开发者嘉年华(数据库动手实验)TDSQL-C初体验
  • 62. 不同路径
  • 户用光伏业务市场开发的步骤
  • 走进低代码报表开发(二):高效报表设计新利器
  • 基于SpringMVC的API灰度方案
  • SuperMap GIS基础产品FAQ集锦(20240911)
  • 使用AI大模型进行企业数据分析与决策支持
  • Redis 的标准使用规范之数据类型使用规范
  • MySQL总结(上)
  • 决策树(Decison Tree)—有监督学习方法、概率模型、生成模型、非线性模型、非参数化模型、批量学习
  • 如何测试你购买的IP的丢包率是否正常
  • 市场上便宜好用的量化交易软件-QMT!QMT系统函数之handlebar - 行情事件函数
  • Matlab simulink建模与仿真 第十一章(端口及子系统库)【下】
  • 力扣337-打家劫舍 III(Java详细题解)
  • mac安装swoole过程