当前位置: 首页 > article >正文

数据分析-13-时间序列异常值检测的类型及常见的检测方法

参考时间序列异常值的分类及检测
参考异常值数据预警分析

1 时间序列异常的类型

时间序列异常检测是数据处理和分析的重要环节,广泛应用于量化交易、网络安全检测、自动驾驶汽车和大型工业设备日常维护等领域。在时间序列数据中,异常通常指的是与正常数据模式显著不同的数据点,可能由系统故障、错误或外部干扰引起。

异常数据,也称为离群点,是指在数据集中与其他数据点明显不同的样本。这些数据点往往不符合预期的模式或行为,可能是由噪声、错误、欺诈行为或系统故障等因素导致的。由于异常数据在整个数据集中占据很小的比例,但其影响却可能非常大,因此异常数据的检测和处理变得尤为重要。

根据异常数据的不同特征,通常可以将其分为以下几类:
(1)点异常(Point Anomaly):在某个特定时间点上的异常数据,与其余数据点明显不同。
(2)上下文异常(Contextual Anomaly):数据点在特定的上下文中表现异常,如在某一特定时间段内异常高的销售额。
(3)集合异常(Col


http://www.kler.cn/a/302800.html

相关文章:

  • openharmony应用开发快速入门
  • 【Android】蓝牙电话HFP连接源码分析
  • 【算法】算法基础课模板大全——第一篇
  • Linux 系统性能调优
  • 利用 LNMP 实现 WordPress 站点搭建
  • 数据结构题目 课时6
  • 专题三_二分查找算法_算法详细总结
  • Jmeter之beanshell使用
  • 适合博客的组件库
  • RHEL 7 安装配置( Linux 网络操作系统 02)
  • 【智能流体力学】数值模拟中的稳态和瞬态
  • OpenHarmony(鸿蒙南向开发)——轻量系统芯片移植指南(二)
  • C#多线程进阶
  • Java面试题·解释题·单例模式、工厂模式、代理模式部分
  • 基于Qt的串口包装器
  • 【SqlServer】SQL Server Management Studio (SSMS) 下载、安装、配置使用及卸载——保姆级教程
  • 数学建模笔记—— 最大最小化规划模型
  • mysql——关于表的增删改查(CRUD)
  • macOS镜像下载(ISO、DMG)
  • xss-labs-master通关教程
  • 起重机检测系统源码分享
  • 【C++11 —— 包装器】
  • 【Sceneform-EQR】通过sceneform-eqr实现一个视频播放器(使用安卓MediaPlayer实现视频播放)
  • 从0开始深入理解并发、线程与等待通知机制
  • 基于微信小程序点餐、外卖系统的设计与实现 (源码+lw+参考文档+核心代码讲解等)
  • 多模态大模型中的图片文本对齐