当前位置: 首页 > article >正文

Open-Sora代码详细解读(2):时空3D VAE

Diffusion Models视频生成

前言:目前开源的DiT视频生成模型不是很多,Open-Sora是开发者生态最好的一个,涵盖了DiT、时空DiT、3D VAE、Rectified Flow、因果卷积等Diffusion视频生成的经典知识点。本篇博客从Open-Sora的代码出发,深入解读背后的原理。

目录

3D VAE原理

代码剖析

2D VAE

时间VAE

因果3D卷积


3D VAE原理

之前绝大多数都是2D VAE,特别是SDXL的VAE相当好用,很多人都拿来直接用了。但是在DiT-based的模型中,时间序列上如果再不做压缩的话,就已经很难训得动了。因此非常有必要在时间序列上进行压缩,3D VAE应运而生。

Open-Sora的方案是在2D VAE的基础上,再添加一个时间VAE,相比于EasyAnimate 和 CogVideoX的方案的Full Attention 存在劣势,但是可以充分利用到2D VAE的权重,成本更低。

代码剖析

2D VAE

来自华为pixart sdxl vae:

    vae_2d = dict(
        type="VideoAutoencoderKL",
        from_pretrained="PixArt-alpha/pixart_sigma_sdxlvae_T5_diffusers",
        subfolder="vae",
        micro_batch_size=micro_batch_size,
        local_files_only=local_files_only,
    )

时间VAE

    vae_temporal = dict(
        type="VAE_Temporal_SD",
        from_pretrained=None,
    )
@MODELS.register_module()
class VAE_Temporal(nn.Module):
    def __init__(
        self,
        in_out_channels=4,
        latent_embed_dim=4,
        embed_dim=4,
        filters=128,
        num_res_blocks=4,
        channel_multipliers=(1, 2, 2, 4),
        temporal_downsample=(True, True, False),
        num_groups=32,  # for nn.GroupNorm
        activation_fn="swish",
    ):
        super().__init__()

        self.time_downsample_factor = 2 ** sum(temporal_downsample)
        # self.time_padding = self.time_downsample_factor - 1
        self.patch_size = (self.time_downsample_factor, 1, 1)
        self.out_channels = in_out_channels

        # NOTE: following MAGVIT, conv in bias=False in encoder first conv
        self.encoder = Encoder(
            in_out_channels=in_out_channels,
            latent_embed_dim=latent_embed_dim * 2,
            filters=filters,
            num_res_blocks=num_res_blocks,
            channel_multipliers=channel_multipliers,
            temporal_downsample=temporal_downsample,
            num_groups=num_groups,  # for nn.GroupNorm
            activation_fn=activation_fn,
        )
        self.quant_conv = CausalConv3d(2 * latent_embed_dim, 2 * embed_dim, 1)

        self.post_quant_conv = CausalConv3d(embed_dim, latent_embed_dim, 1)
        self.decoder = Decoder(
            in_out_channels=in_out_channels,
            latent_embed_dim=latent_embed_dim,
            filters=filters,
            num_res_blocks=num_res_blocks,
            channel_multipliers=channel_multipliers,
            temporal_downsample=temporal_downsample,
            num_groups=num_groups,  # for nn.GroupNorm
            activation_fn=activation_fn,
        )

    def get_latent_size(self, input_size):
        latent_size = []
        for i in range(3):
            if input_size[i] is None:
                lsize = None
            elif i == 0:
                time_padding = (
                    0
                    if (input_size[i] % self.time_downsample_factor == 0)
                    else self.time_downsample_factor - input_size[i] % self.time_downsample_factor
                )
                lsize = (input_size[i] + time_padding) // self.patch_size[i]
            else:
                lsize = input_size[i] // self.patch_size[i]
            latent_size.append(lsize)
        return latent_size

    def encode(self, x):
        time_padding = (
            0
            if (x.shape[2] % self.time_downsample_factor == 0)
            else self.time_downsample_factor - x.shape[2] % self.time_downsample_factor
        )
        x = pad_at_dim(x, (time_padding, 0), dim=2)
        encoded_feature = self.encoder(x)
        moments = self.quant_conv(encoded_feature).to(x.dtype)
        posterior = DiagonalGaussianDistribution(moments)
        return posterior

    def decode(self, z, num_frames=None):
        time_padding = (
            0
            if (num_frames % self.time_downsample_factor == 0)
            else self.time_downsample_factor - num_frames % self.time_downsample_factor
        )
        z = self.post_quant_conv(z)
        x = self.decoder(z)
        x = x[:, :, time_padding:]
        return x

    def forward(self, x, sample_posterior=True):
        posterior = self.encode(x)
        if sample_posterior:
            z = posterior.sample()
        else:
            z = posterior.mode()
        recon_video = self.decode(z, num_frames=x.shape[2])
        return recon_video, posterior, z

因果3D卷积

class CausalConv3d(nn.Module):
    def __init__(
        self,
        chan_in,
        chan_out,
        kernel_size: Union[int, Tuple[int, int, int]],
        pad_mode="constant",
        strides=None,  # allow custom stride
        **kwargs,
    ):
        super().__init__()
        kernel_size = cast_tuple(kernel_size, 3)

        time_kernel_size, height_kernel_size, width_kernel_size = kernel_size

        assert is_odd(height_kernel_size) and is_odd(width_kernel_size)

        dilation = kwargs.pop("dilation", 1)
        stride = strides[0] if strides is not None else kwargs.pop("stride", 1)

        self.pad_mode = pad_mode
        time_pad = dilation * (time_kernel_size - 1) + (1 - stride)
        height_pad = height_kernel_size // 2
        width_pad = width_kernel_size // 2

        self.time_pad = time_pad
        self.time_causal_padding = (width_pad, width_pad, height_pad, height_pad, time_pad, 0)

        stride = strides if strides is not None else (stride, 1, 1)
        dilation = (dilation, 1, 1)
        self.conv = nn.Conv3d(chan_in, chan_out, kernel_size, stride=stride, dilation=dilation, **kwargs)

    def forward(self, x):
        x = F.pad(x, self.time_causal_padding, mode=self.pad_mode)
        x = self.conv(x)
        return x


http://www.kler.cn/a/304209.html

相关文章:

  • GitHub 基础使用指南
  • jQuery get 方法内操控vue变量(异步ajax请求方法中操控双向绑定的响应式变量)实现异步请求函数内完成变量的双向响应式绑定
  • flutter在windows平台中运行报错
  • 设计模式 结构型 适配器模式(Adapter Pattern)与 常见技术框架应用 解析
  • 数据挖掘——朴素贝叶斯分类
  • react 优化方案
  • 双流join
  • Vmware 傻瓜式安装( Linux 网络操作系统 01)
  • 【python计算机视觉编程——10.OpenCV】
  • python画图|3D surface基础教程
  • GO Server-Sent Events (SSE)
  • Linux 基础命令-系统信息查看
  • 可测试,可维护,可移植:上位机软件分层设计的重要性
  • 【Python机器学习】循环神经网络(RNN)——审察模型内部情况
  • 警惕!尿血背后隐藏的健康危机,你不可不知的五大原因!
  • PHP 线程,进程、并发、并行 的理解
  • 大模型从失败中学习 —— 微调大模型以提升Agent性能
  • 华为云服务器的数据库部署及管理
  • Jwt、Filter、Interceptor
  • Python实现牛顿法 目录
  • JDK命令工具
  • 中学 教资 科目二
  • IOS Siri和快捷指令打开app
  • golang学习笔记14——golang性能问题的处理方法
  • 2-94 基于matlab的最佳维纳滤波器的盲解卷积算法
  • 基于微信小程序的食堂点餐预约管理系统