当前位置: 首页 > article >正文

进阶岛 任务2:Lagent 自定义你的 Agent 智能体

Lagent 自定义你的 Agent 智能体

任务:

https://kkgithub.com/InternLM/Tutorial/blob/camp3/docs/L2/Lagent/task.md

记录复现过程并截图

基础任务(完成此任务即完成闯关)
使用 Lagent 自定义一个智能体,并使用 Lagent Web Demo 成功部署与调用,记录复现过程并截图。

文档

https://kkgithub.com/InternLM/Tutorial/blob/camp3/docs/L2/Lagent/readme.md

任务情况

demo

先使用 LMDeploy 部署 InternLM2.5-7B-Chat,并启动一个 API Server。

lmdeploy serve api_server /share/new_models/Shanghai_AI_Laboratory/internlm2_5-7b-chat --model-name internlm2_5-7b-chat

在这里插入图片描述

在另一个窗口中启动 Lagent 的 Web Demo。

cd /root/agent_camp3/lagent
conda activate agent_camp3
streamlit run examples/internlm2_agent_web_demo.py

在这里插入图片描述

internlm2_agent_web_demo.py 代码:

import copy
import hashlib
import json
import os

import streamlit as st

from lagent.actions import ActionExecutor, ArxivSearch, IPythonInterpreter
from lagent.agents.internlm2_agent import INTERPRETER_CN, META_CN, PLUGIN_CN, Internlm2Agent, Internlm2Protocol
from lagent.llms.lmdeploy_wrapper import LMDeployClient
from lagent.llms.meta_template import INTERNLM2_META as META
from lagent.schema import AgentStatusCode

# from streamlit.logger import get_logger


class SessionState:

    def init_state(self):
        """Initialize session state variables."""
        st.session_state['assistant'] = []
        st.session_state['user'] = []

        action_list = [
            ArxivSearch(),
        ]
        st.session_state['plugin_map'] = {
            action.name: action
            for action in action_list
        }
        st.session_state['model_map'] = {}
        st.session_state['model_selected'] = None
        st.session_state['plugin_actions'] = set()
        st.session_state['history'] = []

    def clear_state(self):
        """Clear the existing session state."""
        st.session_state['assistant'] = []
        st.session_state['user'] = []
        st.session_state['model_selected'] = None
        st.session_state['file'] = set()
        if 'chatbot' in st.session_state:
            st.session_state['chatbot']._session_history = []


class StreamlitUI:

    def __init__(self, session_state: SessionState):
        self.init_streamlit()
        self.session_state = session_state

    def init_streamlit(self):
        """Initialize Streamlit's UI settings."""
        st.set_page_config(
            layout='wide',
            page_title='lagent-web',
            page_icon='./docs/imgs/lagent_icon.png')
        st.header(':robot_face: :blue[Lagent] Web Demo ', divider='rainbow')
        st.sidebar.title('模型控制')
        st.session_state['file'] = set()
        st.session_state['ip'] = None

    def setup_sidebar(self):
        """Setup the sidebar for model and plugin selection."""
        # model_name = st.sidebar.selectbox('模型选择:', options=['internlm'])
        model_name = st.sidebar.text_input('模型名称:', value='internlm2-chat-7b')
        meta_prompt = st.sidebar.text_area('系统提示词', value=META_CN)
        da_prompt = st.sidebar.text_area('数据分析提示词', value=INTERPRETER_CN)
        plugin_prompt = st.sidebar.text_area('插件提示词', value=PLUGIN_CN)
        model_ip = st.sidebar.text_input('模型IP:', value='10.140.0.220:23333')
        if model_name != st.session_state[
                'model_selected'] or st.session_state['ip'] != model_ip:
            st.session_state['ip'] = model_ip
            model = self.init_model(model_name, model_ip)
            self.session_state.clear_state()
            st.session_state['model_selected'] = model_name
            if 'chatbot' in st.session_state:
                del st.session_state['chatbot']
        else:
            model = st.session_state['model_map'][model_name]

        plugin_name = st.sidebar.multiselect(
            '插件选择',
            options=list(st.session_state['plugin_map'].keys()),
            default=[],
        )
        da_flag = st.sidebar.checkbox(
            '数据分析',
            value=False,
        )
        plugin_action = [
            st.session_state['plugin_map'][name] for name in plugin_name
        ]

        if 'chatbot' in st.session_state:
            if len(plugin_action) > 0:
                st.session_state['chatbot']._action_executor = ActionExecutor(
                    actions=plugin_action)
            else:
                st.session_state['chatbot']._action_executor = None
            if da_flag:
                st.session_state[
                    'chatbot']._interpreter_executor = ActionExecutor(
                        actions=[IPythonInterpreter()])
            else:
                st.session_state['chatbot']._interpreter_executor = None
            st.session_state['chatbot']._protocol._meta_template = meta_prompt
            st.session_state['chatbot']._protocol.plugin_prompt = plugin_prompt
            st.session_state[
                'chatbot']._protocol.interpreter_prompt = da_prompt
        if st.sidebar.button('清空对话', key='clear'):
            self.session_state.clear_state()
        uploaded_file = st.sidebar.file_uploader('上传文件')

        return model_name, model, plugin_action, uploaded_file, model_ip

    def init_model(self, model_name, ip=None):
        """Initialize the model based on the input model name."""
        model_url = f'http://{ip}'
        st.session_state['model_map'][model_name] = LMDeployClient(
            model_name=model_name,
            url=model_url,
            meta_template=META,
            max_new_tokens=1024,
            top_p=0.8,
            top_k=100,
            temperature=0,
            repetition_penalty=1.0,
            stop_words=['<|im_end|>'])
        return st.session_state['model_map'][model_name]

    def initialize_chatbot(self, model, plugin_action):
        """Initialize the chatbot with the given model and plugin actions."""
        return Internlm2Agent(
            llm=model,
            protocol=Internlm2Protocol(
                tool=dict(
                    begin='{start_token}{name}\n',
                    start_token='<|action_start|>',
                    name_map=dict(
                        plugin='<|plugin|>', interpreter='<|interpreter|>'),
                    belong='assistant',
                    end='<|action_end|>\n',
                ), ),
            max_turn=7)

    def render_user(self, prompt: str):
        with st.chat_message('user'):
            st.markdown(prompt)

    def render_assistant(self, agent_return):
        with st.chat_message('assistant'):
            for action in agent_return.actions:
                if (action) and (action.type != 'FinishAction'):
                    self.render_action(action)
            st.markdown(agent_return.response)

    def render_plugin_args(self, action):
        action_name = action.type
        args = action.args
        import json
        parameter_dict = dict(name=action_name, parameters=args)
        parameter_str = '```json\n' + json.dumps(
            parameter_dict, indent=4, ensure_ascii=False) + '\n```'
        st.markdown(parameter_str)

    def render_interpreter_args(self, action):
        st.info(action.type)
        st.markdown(action.args['text'])

    def render_action(self, action):
        st.markdown(action.thought)
        if action.type == 'IPythonInterpreter':
            self.render_interpreter_args(action)
        elif action.type == 'FinishAction':
            pass
        else:
            self.render_plugin_args(action)
        self.render_action_results(action)

    def render_action_results(self, action):
        """Render the results of action, including text, images, videos, and
        audios."""
        if (isinstance(action.result, dict)):
            if 'text' in action.result:
                st.markdown('```\n' + action.result['text'] + '\n```')
            if 'image' in action.result:
                # image_path = action.result['image']
                for image_path in action.result['image']:
                    image_data = open(image_path, 'rb').read()
                    st.image(image_data, caption='Generated Image')
            if 'video' in action.result:
                video_data = action.result['video']
                video_data = open(video_data, 'rb').read()
                st.video(video_data)
            if 'audio' in action.result:
                audio_data = action.result['audio']
                audio_data = open(audio_data, 'rb').read()
                st.audio(audio_data)
        elif isinstance(action.result, list):
            for item in action.result:
                if item['type'] == 'text':
                    st.markdown('```\n' + item['content'] + '\n```')
                elif item['type'] == 'image':
                    image_data = open(item['content'], 'rb').read()
                    st.image(image_data, caption='Generated Image')
                elif item['type'] == 'video':
                    video_data = open(item['content'], 'rb').read()
                    st.video(video_data)
                elif item['type'] == 'audio':
                    audio_data = open(item['content'], 'rb').read()
                    st.audio(audio_data)
        if action.errmsg:
            st.error(action.errmsg)


def main():
    # logger = get_logger(__name__)
    # Initialize Streamlit UI and setup sidebar
    if 'ui' not in st.session_state:
        session_state = SessionState()
        session_state.init_state()
        st.session_state['ui'] = StreamlitUI(session_state)

    else:
        st.set_page_config(
            layout='wide',
            page_title='lagent-web',
            page_icon='./docs/imgs/lagent_icon.png')
        st.header(':robot_face: :blue[Lagent] Web Demo ', divider='rainbow')
    _, model, plugin_action, uploaded_file, _ = st.session_state[
        'ui'].setup_sidebar()

    # Initialize chatbot if it is not already initialized
    # or if the model has changed
    if 'chatbot' not in st.session_state or model != st.session_state[
            'chatbot']._llm:
        st.session_state['chatbot'] = st.session_state[
            'ui'].initialize_chatbot(model, plugin_action)
        st.session_state['session_history'] = []

    for prompt, agent_return in zip(st.session_state['user'],
                                    st.session_state['assistant']):
        st.session_state['ui'].render_user(prompt)
        st.session_state['ui'].render_assistant(agent_return)

    if user_input := st.chat_input(''):
        with st.container():
            st.session_state['ui'].render_user(user_input)
        st.session_state['user'].append(user_input)
        # Add file uploader to sidebar
        if (uploaded_file
                and uploaded_file.name not in st.session_state['file']):

            st.session_state['file'].add(uploaded_file.name)
            file_bytes = uploaded_file.read()
            file_type = uploaded_file.type
            if 'image' in file_type:
                st.image(file_bytes, caption='Uploaded Image')
            elif 'video' in file_type:
                st.video(file_bytes, caption='Uploaded Video')
            elif 'audio' in file_type:
                st.audio(file_bytes, caption='Uploaded Audio')
            # Save the file to a temporary location and get the path

            postfix = uploaded_file.name.split('.')[-1]
            # prefix = str(uuid.uuid4())
            prefix = hashlib.md5(file_bytes).hexdigest()
            filename = f'{prefix}.{postfix}'
            file_path = os.path.join(root_dir, filename)
            with open(file_path, 'wb') as tmpfile:
                tmpfile.write(file_bytes)
            file_size = os.stat(file_path).st_size / 1024 / 1024
            file_size = f'{round(file_size, 2)} MB'
            # st.write(f'File saved at: {file_path}')
            user_input = [
                dict(role='user', content=user_input),
                dict(
                    role='user',
                    content=json.dumps(dict(path=file_path, size=file_size)),
                    name='file')
            ]
        if isinstance(user_input, str):
            user_input = [dict(role='user', content=user_input)]
        st.session_state['last_status'] = AgentStatusCode.SESSION_READY
        for agent_return in st.session_state['chatbot'].stream_chat(
                st.session_state['session_history'] + user_input):
            if agent_return.state == AgentStatusCode.PLUGIN_RETURN:
                with st.container():
                    st.session_state['ui'].render_plugin_args(
                        agent_return.actions[-1])
                    st.session_state['ui'].render_action_results(
                        agent_return.actions[-1])
            elif agent_return.state == AgentStatusCode.CODE_RETURN:
                with st.container():
                    st.session_state['ui'].render_action_results(
                        agent_return.actions[-1])
            elif (agent_return.state == AgentStatusCode.STREAM_ING
                  or agent_return.state == AgentStatusCode.CODING):
                # st.markdown(agent_return.response)
                # 清除占位符的当前内容,并显示新内容
                with st.container():
                    if agent_return.state != st.session_state['last_status']:
                        st.session_state['temp'] = ''
                        placeholder = st.empty()
                        st.session_state['placeholder'] = placeholder
                    if isinstance(agent_return.response, dict):
                        action = f"\n\n {agent_return.response['name']}: \n\n"
                        action_input = agent_return.response['parameters']
                        if agent_return.response[
                                'name'] == 'IPythonInterpreter':
                            action_input = action_input['command']
                        response = action + action_input
                    else:
                        response = agent_return.response
                    st.session_state['temp'] = response
                    st.session_state['placeholder'].markdown(
                        st.session_state['temp'])
            elif agent_return.state == AgentStatusCode.END:
                st.session_state['session_history'] += (
                    user_input + agent_return.inner_steps)
                agent_return = copy.deepcopy(agent_return)
                agent_return.response = st.session_state['temp']
                st.session_state['assistant'].append(
                    copy.deepcopy(agent_return))
            st.session_state['last_status'] = agent_return.state


if __name__ == '__main__':
    root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
    root_dir = os.path.join(root_dir, 'tmp_dir')
    os.makedirs(root_dir, exist_ok=True)
    main()

本地windows powershell 端口映射:

ssh -CNg -L 8501:127.0.0.1:8501 -L 23333:127.0.0.1:23333 root@ssh.intern-ai.org.cn -p 48626 

在这里插入图片描述

agent智能体结果返回:

圈出的是3个地方要更改。

在这里插入图片描述

定义自己的智能体

magicmaker.py


import json
import requests

from lagent.actions.base_action import BaseAction, tool_api
from lagent.actions.parser import BaseParser, JsonParser
from lagent.schema import ActionReturn, ActionStatusCode


class MagicMaker(BaseAction):
    styles_option = [
        'dongman',  # 动漫
        'guofeng',  # 国风
        'xieshi',   # 写实
        'youhua',   # 油画
        'manghe',   # 盲盒
    ]
    aspect_ratio_options = [
        '16:9', '4:3', '3:2', '1:1',
        '2:3', '3:4', '9:16'
    ]

    def __init__(self,
                 style='guofeng',
                 aspect_ratio='4:3'):
        super().__init__()
        if style in self.styles_option:
            self.style = style
        else:
            raise ValueError(f'The style must be one of {self.styles_option}')
        
        if aspect_ratio in self.aspect_ratio_options:
            self.aspect_ratio = aspect_ratio
        else:
            raise ValueError(f'The aspect ratio must be one of {aspect_ratio}')
    
    @tool_api
    def generate_image(self, keywords: str) -> dict:
        """Run magicmaker and get the generated image according to the keywords.

        Args:
            keywords (:class:`str`): the keywords to generate image

        Returns:
            :class:`dict`: the generated image
                * image (str): path to the generated image
        """
        try:
            response = requests.post(
                url='https://magicmaker.openxlab.org.cn/gw/edit-anything/api/v1/bff/sd/generate',
                data=json.dumps({
                    "official": True,
                    "prompt": keywords,
                    "style": self.style,
                    "poseT": False,
                    "aspectRatio": self.aspect_ratio
                }),
                headers={'content-type': 'application/json'}
            )
        except Exception as exc:
            return ActionReturn(
                errmsg=f'MagicMaker exception: {exc}',
                state=ActionStatusCode.HTTP_ERROR)
        image_url = response.json()['data']['imgUrl']
        return {'image': image_url}


自定义智能体结果:
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

笔记

Lagent

官网
https://lagent.readthedocs.io/zh-cn/latest/tutorials/action.html

是一个轻量级开源智能体框架,旨在让用户可以高效地构建基于大语言模型的智能体。同时它也提供了一些典型工具以增强大语言模型的能力。

功能: 解决LLM解决不了的问题。如文生图,查论文。

agent

“agent”(智能体)通常指的是一个能够独立执行任务、做出决策并与其环境进行交互的软件实体或系统。智能体可以简单或复杂,从自动化脚本到复杂的机器人系统,都可以被称为智能体。

Streamlit

Streamlit 是一个开源的 Python 库,它允许数据科学家和开发者快速创建和分享美观、交互式的 Web 应用。使用 Streamlit,你可以将 Python 脚本转换为交互式 Web 应用,而无需前端开发经验。Streamlit 的特点包括快速开发、高度交互性、易于共享,并且可以部署到云平台。

要安装 Streamlit,你可以使用以下命令:

pip install streamlit
安装完成后,你可以创建一个 Python 脚本,例如 app.py,并使用 Streamlit 的 API 来构建你的应用。然后,通过运行以下命令来启动应用:

streamlit run app.py
这将启动一个本地服务器,并在默认的 Web 浏览器中打开你的 Streamlit 应用。

Streamlit 提供了丰富的组件和功能,包括文本和数据显示、图表和可视化、交互式组件、布局、缓存、会话状态等。你可以使用这些组件来构建交互式的数据应用,例如数据探索和可视化工具、机器学习模型展示、复杂业务流程自动化等。

Streamlit 的核心优势在于其简单性和高效性,它通过减少样板代码的使用,使得创建数据驱动的应用变得简单。Streamlit 应用可以轻松部署和共享,只要具备 Python 运行环境即可。

如果你想要了解更多关于 Streamlit 的信息,可以访问 Streamlit 的官方文档
,这里提供了从安装到部署的详细指南,以及如何使用 Streamlit 开发实战项目的全面介绍。此外,还有许多在线资源和社区,你可以在其中找到教程、案例分析和最佳实践


http://www.kler.cn/a/305177.html

相关文章:

  • Java Bean Validation 不适用Spring的情况下自定义validation注解
  • js:根据后端返回数据的最大值进行计算然后设置这个最大值为百分之百,其他的值除这个最大值
  • Web前端界面开发
  • QT Quick QML 实例之椭圆投影,旋转
  • 对比学习 (Contrastive Learning) 算法详解与PyTorch实现
  • 整数和浮点数的存储
  • sshpass 实现的SSH免交互密码登录和ARM移植
  • Java中List集合去重
  • 【python计算机视觉编程——9.图像分割】
  • 什么是 SMB 服务器以及它如何工作?
  • Nginx引发的惨案
  • 动手学深度学习(pytorch)学习记录28-使用块的网络(VGG)[学习记录]
  • 【计算机网络】HTTPHTTPS
  • vue前端实现下载导入模板文件
  • 1405 问题 E: 世界杯
  • 基于深度学习的信号滤波:创新技术与应用挑战
  • PyTorch 和 TensorFlow
  • 【深度学习】神经网络-怎么分清DNN、CNN、RNN?
  • Anaconda pytorch-gpu CUDA CUDNN 安装指南
  • clickhouse 保证幂等性
  • 前端面试记录
  • mybatis-plu分页出现问题
  • JVM面试真题总结(九)
  • windows检查端口占用并关闭应用
  • git报错,error: bad signature 0x00000000fatal: index file corrupt
  • 3. 进阶指南:自定义 Prompt 提升大模型解题能力