当前位置: 首页 > article >正文

简单多状态DP问题

在这里插入图片描述

文章目录

  • 面试题 17.16. 按摩师
    • 题目链接
    • 题目描述
    • 分析
    • 代码
  • 213. 打家劫舍 II
    • 题目链接
    • 题目描述
    • 分析
    • 代码
  • 740. 删除并获得点数
    • 题目描述
    • 分析
    • 代码
  • LCR 091. 粉刷房子
    • 题目链接
    • 题目描述
    • 分析
    • 代码
  • 309. 买卖股票的最佳时机含冷冻期
    • 题目链接
    • 题目描述
    • 分析
    • 代码
  • 714.买卖股票的最佳时机含⼿续费
    • 题目链接
    • 题目描述
    • 分析
    • 代码
  • 123.买卖股票的最佳时机 III
    • 题目链接
    • 题目描述
    • 分析
    • 代码
  • 188买卖股票的最佳时机 IV
    • 题目链接
    • 题目描述
    • 代码

面试题 17.16. 按摩师

题目链接

面试题 17.16. 按摩师

题目描述

一个有名的按摩师会收到源源不断的预约请求,每个预约都可以选择接或不接。在每次预约服务之间要有休息时间,因此她不能接受相邻的预约。给定一个预约请求序列,替按摩师找到最优的预约集合(总预约时间最长),返回总的分钟数。

注意:本题相对原题稍作改动

示例 1:

输入: [1,2,3,1]
输出: 4
解释: 选择 1 号预约和 3 号预约,总时长 = 1 + 3 = 4。
示例 2:

输入: [2,7,9,3,1]
输出: 12
解释: 选择 1 号预约、 3 号预约和 5 号预约,总时长 = 2 + 9 + 1 = 12。
示例 3:

输入: [2,1,4,5,3,1,1,3]
输出: 12
解释: 选择 1 号预约、 3 号预约、 5 号预约和 8 号预约,总时长 = 2 + 4 + 3 + 3 = 12。

分析

  1. 状态表示:经验(以某个位置为结尾)+题目要求
    dp[i]选择到i位置的时候,此时的最长预约时长。继续细化:划分为两种状态f[i]表示选择到i位置的时候,nums[i]位置必选,此时最长预约时间最长;g[i]表示选择到i位置的时候,nums[i]位置不选,此时最长预约时间最长。
    在这里插入图片描述

  2. 状态转移方程
    i个位置选:f[i]=g[i-1]+nums[i]
    在这里插入图片描述
    i个位置不选:g[i]=max(f[i-1],g[i-1]),此时i-1位置可选可不选。
    在这里插入图片描述

  3. 初始化
    f[0]=nuns[0]g[0]=0

  4. 填表顺序
    从左往右

  5. 返回值
    max(f[n-1],g[n-1])

代码

class Solution {
public:
    int massage(vector<int>& nums) {
        int n=nums.size();
        if(n==0) return 0; 
        vector<int> f(n),g(n);
        f[0]=nums[0];
        for(int i=1;i<n;i++)
        {
            f[i]=g[i-1]+nums[i];
            g[i]=max(f[i-1],g[i-1]);
        }
        return max(f[n-1],g[n-1]);
    }
};

213. 打家劫舍 II

题目链接

213. 打家劫舍 II

题目描述

你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金。这个地方所有的房屋都 围成一圈 ,这意味着第一个房屋和最后一个房屋是紧挨着的。同时,相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警 。

给定一个代表每个房屋存放金额的非负整数数组,计算你 在不触动警报装置的情况下 ,今晚能够偷窃到的最高金额。

示例 1:

输入:nums = [2,3,2]
输出:3
解释:你不能先偷窃 1 号房屋(金额 = 2),然后偷窃 3 号房屋(金额 = 2), 因为他们是相邻的。
示例 2:

输入:nums = [1,2,3,1]
输出:4
解释:你可以先偷窃 1 号房屋(金额 = 1),然后偷窃 3 号房屋(金额 = 3)。
偷窃到的最高金额 = 1 + 3 = 4 。
示例 3:

输入:nums = [1,2,3]
输出:3

提示:

1 <= nums.length <= 100
0 <= nums[i] <= 1000

分析

选了第一个位置就不能选择最后一个位置的房屋,因为是一个环形的房屋,第一个和最后一个是相邻的。分为两种情况:选第一个位置:nums[0]+rob(2,n-2),第一个位置不选:rob(1,n-1)。最终选择两种情况中最大值即可。

  1. 状态表示
    f[i]表示偷到i位置是,偷nums[i],此时的最大金额;g[i]表示偷到i位置是,不偷nums[i],此时的最大金额。

  2. 状态转移方程
    偷第i位置:f[i]=g[i-1]+nums[i]
    不偷第i位置:g[i]=max(f[i-1],g[i-1])
    在这里插入图片描述

  3. 初始化
    f[0]=nums[0]
    g[0]=0

  4. 填表顺序
    从左往右,两表一起

  5. 返回值
    max(f[n-1],g[n-1])

代码

class Solution {

int rob1(vector<int>& nums,int l,int r)
{
    if(l>r) return 0;
    int n=nums.size();
    vector<int> f(n),g(n);
    f[l]=nums[l];
    for(int i=l+1;i<=r;i++)
    {
        f[i]=g[i-1]+nums[i];
        g[i]=max(f[i-1],g[i-1]);
    }
    return max(f[r],g[r]);
}

public:
    int rob(vector<int>& nums) {
        int n=nums.size();

        return max(nums[0]+rob1(nums,2,n-2),rob1(nums,1,n-1));        

    }
};

740. 删除并获得点数

题目描述

给你一个整数数组 nums ,你可以对它进行一些操作。

每次操作中,选择任意一个 nums[i] ,删除它并获得 nums[i] 的点数。之后,你必须删除 所有 等于 nums[i] - 1 和 nums[i] + 1 的元素。

开始你拥有 0 个点数。返回你能通过这些操作获得的最大点数。

示例 1:
输入:nums = [3,4,2]
输出:6
解释:删除 4 获得 4 个点数,因此 3 也被删除。之后,删除 2 获得 2 个点数。总共获得 6 个点数。

示例 2:
输入:nums = [2,2,3,3,3,4]
输出:9
解释:删除 3 获得 3 个点数,接着要删除两个 2 和 4 。之后,再次删除 3 获得 3 个点数,再次删除 3 获得 3 个点数。总共获得 9 个点数。

分析

本道题需要先预处理一下:
记录nums数组中的值放在arr数组中,arr数组下标对应nums数组中的数字,arr数组下标对应的内容是nums数组中同一个数字的总和。
例如:nums = [2,2,3,3,3,4],那么arr[0,0,4,9,4]

剩下的就是动态规划问题,类似于打家劫舍,不再具体分析。

代码

class Solution {
public:
    int deleteAndEarn(vector<int>& nums) {
        vector<int> arr(10001,0);
        for(auto x:nums) arr[x]+=x;
        vector<int> f(10001),g(10001);
        f[0]=arr[0],g[0]=0;
        for(int i=1;i<10001;i++)
        {
            f[i]=g[i-1]+arr[i];
            g[i]=max(g[i-1],f[i-1]);
        }
        return max(f[10000],g[10000]);
    }
};

LCR 091. 粉刷房子

题目链接

LCR 091. 粉刷房子

题目描述

假如有一排房子,共 n 个,每个房子可以被粉刷成红色、蓝色或者绿色这三种颜色中的一种,你需要粉刷所有的房子并且使其相邻的两个房子颜色不能相同。
当然,因为市场上不同颜色油漆的价格不同,所以房子粉刷成不同颜色的花费成本也是不同的。每个房子粉刷成不同颜色的花费是以一个 n x 3 的正整数矩阵 costs 来表示的。
例如,costs[0][0] 表示第 0 号房子粉刷成红色的成本花费;costs[1][2] 表示第 1 号房子粉刷成绿色的花费,以此类推。
请计算出粉刷完所有房子最少的花费成本。

示例 1:
输入: costs = [[17,2,17],[16,16,5],[14,3,19]]
输出: 10
解释: 将 0 号房子粉刷成蓝色,1 号房子粉刷成绿色,2 号房子粉刷成蓝色。
最少花费: 2 + 5 + 3 = 10。

示例 2:
输入: costs = [[7,6,2]]
输出: 2

分析

分析一下示例1,理解一下costs数组的使用方法:

在这里插入图片描述

  • 状态表示:
    dp[i][0]:表示粉刷到i位置时,粉刷上红色,此时的最小花费
    dp[i][1]:表示粉刷到i位置时,粉刷上蓝色,此时的最小花费
    dp[i][2]:表示粉刷到i位置时,粉刷上绿色,此时的最小花费
    在这里插入图片描述

  • 状态转移方程:
    i位置刷红色:dp[i][0]=min(dp[i-1][1],dp[i-1][2])+costs[i][0]
    在这里插入图片描述
    i位置刷蓝色:dp[i][1]=min(dp[i-1][0],dp[i-1][2])+costs[i][1]
    i位置刷绿色:dp[i][2]=min(dp[i-1][1],dp[i-1][2])+costs[i][2]

  • 初始化
    添加一个虚拟节点,保证后面填表是正确的,注意下标的映射关系。虚拟节点初始化为0。
    在这里插入图片描述

  • 填表顺序
    一次填写三个表,从左往右填表

  • 返回值
    返回三个dp表的最后一个值,并且是最小的。

代码

class Solution {
public:
    int minCost(vector<vector<int>>& costs) {
        int n=costs.size();
        vector<vector<int>> dp(n+1,vector<int>(3));
        for(int i=1;i<=n;i++)
        {
            dp[i][0]=min(dp[i-1][1],dp[i-1][2])+costs[i-1][0];
            dp[i][1]=min(dp[i-1][0],dp[i-1][2])+costs[i-1][1];
            dp[i][2]=min(dp[i-1][0],dp[i-1][1])+costs[i-1][2];
        }
        return min(min(dp[n][0],dp[n][1]),dp[n][2]);
    }
};

309. 买卖股票的最佳时机含冷冻期

题目链接

309.买卖股票的最佳时机含冷冻期

题目描述

给定一个整数数组prices,其中第 prices[i] 表示第 i 天的股票价格 。​
设计一个算法计算出最大利润。在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖一支股票):
卖出股票后,你无法在第二天买入股票 (即冷冻期为 1 天)。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1:
输入: prices = [1,2,3,0,2]
输出: 3
解释: 对应的交易状态为: [买入, 卖出, 冷冻期, 买入, 卖出]

示例 2:
输入: prices = [1]
输出: 0

分析

  • 状态表示:
    dp[i][0]表示第i天结束之后,处于买入状态,此时的最大利润
    dp[i][1]表示第i天结束之后,处于可交易状态,此时的最大利润
    dp[i][2]表示第i天结束之后,处于冷冻期状态,此时的最大利润

  • 状态转移方程:
    如果第i-1天处于买入状态,第i天可以啥也不干;
    如果第i-1天处于可交易状态,第i天可以处于买入状态;
    如果第i-1天处于冷冻期状态,第i天无法可以处于买入状态,并且-price[i]
    如果第i-1处于买入状态,第i天可以处于冷冻期,并且+price[i]
    如果第i-1处于可交易状态,第i天依旧可以处于可交易状态,啥也不干;
    如果第i-1处于可交易状态,第i天可以处于冷冻期状态
    在这里插入图片描述
    dp[i][0]=max(dp[i-1][0],dp[i-1][1]-p[i])
    dp[i][1]=max(dp[i-1][1],dp[i-1][2])
    dp[i][2]=dp(dp[i-1][0]+p[i]

  • 初始化
    dp[0][0]=-p[0]
    dp[0][1]=0
    dp[0][2]=0

  • 填表顺序
    从左往右,一次填三个表

  • 返回值
    max(dp[n-1][1],dp[n-1][2])

代码

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int n=prices.size();
        vector<vector<int>> dp(n,vector<int>(3));
        dp[0][0]=-prices[0];
        for(int i=1;i<n;i++)
        {
            dp[i][0]=max(dp[i-1][0],dp[i-1][1]-prices[i]);
            dp[i][1]=max(dp[i-1][1],dp[i-1][2]);
            dp[i][2]=dp[i-1][0]+prices[i];
        }
        return max(dp[n-1][1],dp[n-1][2]);
    }
};

空间复杂度O(n),时间复杂度O(n)


714.买卖股票的最佳时机含⼿续费

题目链接

714.买卖股票的最佳时机含⼿续费

题目描述

给定一个整数数组 prices,其中 prices[i]表示第 i 天的股票价格 ;整数 fee 代表了交易股票的手续费用。
你可以无限次地完成交易,但是你每笔交易都需要付手续费。如果你已经购买了一个股票,在卖出它之前你就不能再继续购买股票了。
返回获得利润的最大值。
注意:这里的一笔交易指买入持有并卖出股票的整个过程,每笔交易你只需要为支付一次手续费。

示例 1:
输入:prices = [1, 3, 2, 8, 4, 9], fee = 2
输出:8
解释:能够达到的最大利润:
在此处买入 prices[0] = 1
在此处卖出 prices[3] = 8
在此处买入 prices[4] = 4
在此处卖出 prices[5] = 9
总利润: ((8 - 1) - 2) + ((9 - 4) - 2) = 8

示例 2:
输入:prices = [1,3,7,5,10,3], fee = 3
输出:6

分析

  • 状态表示
    f[i]表示第i天结束后,处于买入状态,此时最大利润
    g[i]表示第i天结束后,处于卖出状态,此时最大利润
  • 状态转移方程
    f[i]=max(f[i-1],g[i-1]-p[i])
    g[i]=max(g[i-1],f[i-1]+p[i]-fee)
  • 初始化
    f[0]=-p[0]
    g[0]=0
  • 填表顺序
    从左到右,两个表同时填
  • 返回值
    g[n-1]
    结果不可能是f[n-1]

代码

class Solution {
public:
    int maxProfit(vector<int>& prices, int fee) {
        int n=prices.size();
        vector<int> f(n);
        vector<int> g(n);

        f[0]=-prices[0];

        for(int i=1;i<n;i++)
        {
            f[i]=max(f[i-1],g[i-1]-prices[i]);
            g[i]=max(g[i-1],f[i-1]+prices[i]-fee);
        }
        return g[n-1];
    }
};

123.买卖股票的最佳时机 III

题目链接

123.买卖股票的最佳时机 III

题目描述

给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1:
输入:prices = [3,3,5,0,0,3,1,4]
输出:6
解释:在第 4 天(股票价格 = 0)的时候买入,在第 6 天(股票价格 = 3)的时候卖出,这笔交易所能获得利润 = 3-0 = 3 。
随后,在第 7 天(股票价格 = 1)的时候买入,在第 8 天 (股票价格 = 4)的时候卖出,这笔交易所能获得利润 = 4-1 = 3 。

示例 2:
输入:prices = [1,2,3,4,5]
输出:4
解释:在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。
因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。

示例 3:
输入:prices = [7,6,4,3,1]
输出:0
解释:在这个情况下, 没有交易完成, 所以最大利润为 0。

示例 4:
输入:prices = [1]
输出:0

分析

  • 状态表示
    f[i][j]表示第i天结束后,完成了j次交易,此时处于买入状态下达到最大利润
    g[i][j]表示第i天结束后,完成了j次交易,此时处于卖出状态下达到最大利润
    在这里插入图片描述

  • 状态转移方程
    f[i][j]=max(f[i-1][j],g[i-1][j]-p[i])
    g[i][j]=max(g[i-1][j],f[i-1][j-1]+p[i]f[i-1][j-1]因为当天次数为j,所以前一天交易次数为j-1

在这里插入图片描述

  • 初始化
    在这里插入图片描述

  • 填表顺序
    从左往右,两个表同时填

  • 返回值
    g表中最后一行的最大值

代码

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int n=prices.size();
        vector<vector<int>> f(n,vector<int>(3,-0x3f3f3f3f));
        
        auto g=f;
        f[0][0]=-prices[0],g[0][0]=0;

        for(int i=1;i<n;i++)
        {
            for(int j=0;j<3;j++)
            {
                f[i][j]=max(f[i-1][j],g[i-1][j]-prices[i]);
                g[i][j]=g[i-1][j];
                if(j-1>=0)
                {
                    g[i][j]=max(g[i-1][j],f[i-1][j-1]+prices[i]);
                }
            }
        }
        //找到最后一行的最大值
        int ans=0;
        for(int i=0;i<3;i++)
        {
            ans=max(ans,g[n-1][i]);
        }
        return ans;
    }
};

188买卖股票的最佳时机 IV

题目链接

188买卖股票的最佳时机 IV

题目描述

给你一个整数数组 prices 和一个整数 k ,其中 prices[i] 是某支给定的股票在第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你最多可以完成 k 笔交易。也就是说,你最多可以买 k 次,卖 k 次。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1:
输入:k = 2, prices = [2,4,1]
输出:2
解释:在第 1 天 (股票价格 = 2) 的时候买入,在第 2 天 (股票价格 = 4) 的时候卖出,这笔交易所能获得利润 = 4-2 = 2 。

示例 2:
输入:k = 2, prices = [3,2,6,5,0,3]
输出:7
解释:在第 2 天 (股票价格 = 2) 的时候买入,在第 3 天 (股票价格 = 6) 的时候卖出, 这笔交易所能获得利润 = 6-2 = 4 。
随后,在第 5 天 (股票价格 = 0) 的时候买入,在第 6 天 (股票价格 = 3) 的时候卖出, 这笔交易所能获得利润 = 3-0 = 3 。

代码

class Solution {
public:
    int maxProfit(int k, vector<int>& prices) {
         int n=prices.size();
        vector<vector<int>> f(n,vector<int>(k+1,-0x3f3f3f3f));
        
        auto g=f;
        f[0][0]=-prices[0],g[0][0]=0;

        for(int i=1;i<n;i++)
        {
            for(int j=0;j<=k;j++)
            {
                f[i][j]=max(f[i-1][j],g[i-1][j]-prices[i]);
                g[i][j]=g[i-1][j];
                if(j-1>=0)
                {
                    g[i][j]=max(g[i-1][j],f[i-1][j-1]+prices[i]);
                }
            }
        }
        //找到最后一行的最大值
        int ans=0;
        for (int j = 0; j <= k; ++j) {
            ans = max(ans, g[n-1][j]);
        }
        return ans;
    }
};

在这里插入图片描述


http://www.kler.cn/a/306962.html

相关文章:

  • windows C#-LINQ概述
  • 回归分析学习
  • 相亲小程序(源码+文档+部署+讲解)
  • git status 命令卡顿的排查
  • [ Linux 命令基础 3 ] Linux 命令详解-文件和目录管理命令
  • 力扣每日一题 3258. 统计满足 K 约束的子字符串数量 I
  • framebuffer在Ubuntu上的操作
  • [数据集][目标检测]智慧交通铁路人员危险行为躺站坐检测数据集VOC+YOLO格式3766张4类别
  • MySQL 中的 GROUP BY 和 HAVING 子句:特性、用法与注意事项
  • 包含 Python 与 Jupyter的Anaconda的下载安装
  • c#将int转为中文数字
  • 为什么H.266未能普及?EasyCVR视频编码技术如何填补市场空白
  • CentOS入门宝典:从零到一构建你的Linux服务器帝国
  • Linux基础开发环境(git的使用)
  • 经验笔记:Node.js 中的 process.nextTick
  • 解决Linux服务器 shell 上下左右键出现乱码^[[D ^[[C ^[[A ^[[B
  • 在linux下,找到指定命令对应的路径信息
  • echarts 5.3.2 折线图 tooltip设置trigger为axis无效
  • 面向对象程序设计之继承(C++)
  • OpenCV-上下采样
  • Pytorch是如何做显存管理的
  • qmt量化交易策略小白学习笔记第64期【qmt编程之获取获取期权全推数据--code_list全推tick数据】
  • 鸿蒙媒体开发系列01——资源分类访问
  • 移情别恋c++ ദ്ദി˶ー̀֊ー́ ) ——13.mapset
  • 【springboot】整合spring security 和 JWT
  • Vue接入高德地图并实现基本的路线规划功能