当前位置: 首页 > article >正文

【无人机设计与控制】四旋翼无人机俯仰姿态保持模糊PID控制(带说明报告)

摘要

为了克服常规PID控制方法在无人机俯仰姿态控制中的不足,本研究设计了一种基于模糊自适应PID控制的控制律。通过引入模糊控制器,实现了对输入输出论域的优化选择,同时解决了模糊规则数量与控制精度之间的矛盾。仿真结果表明,所设计的控制器能够有效改善系统的动态性能,提高姿态控制的响应速度和稳定性。

理论

模糊PID控制器结合了模糊控制与传统PID控制的优点,主要原理是通过模糊逻辑自适应调整PID参数,从而在系统状态发生变化时进行快速调整,提高系统的鲁棒性和适应性。控制器由三部分组成:模糊化模块、规则推理模块和反模糊化模块。

  1. 模糊化模块:将输入误差和误差变化率转换为模糊变量。

  2. 规则推理模块:根据模糊规则库,通过模糊推理得到PID参数调整量。

  3. 反模糊化模块:将推理结果转化为具体的PID参数调整值,实时作用于控制器。

实验结果

通过Simulink对无人机的俯仰姿态控制进行了仿真测试,验证了模糊PID控制器的有效性。仿真结果显示,与传统PID控制相比,模糊PID控制器在响应时间、超调量、稳态误差等方面均表现出更好的控制效果。

  • 响应时间:控制器能够迅速响应设定值的变化,调整速度较快。

  • 超调量:控制系统的超调量明显减少,提高了系统的稳定性。

  • 稳态误差:系统能够快速消除误差,达到理想设定值,稳态性能优越。

部分代码

% 模糊PID控制器设计
fuzzyPID = readfis('fuzzyPID.fis'); % 读取模糊控制器文件
Kp = 1; % 初始比例增益
Ki = 0.5; % 初始积分增益
Kd = 0.1; % 初始微分增益

% 控制器输入
error = input('输入误差:'); % 误差
delta_error = input('输入误差变化率:'); % 误差变化率

% 模糊推理
fuzzy_output = evalfis([error delta_error], fuzzyPID);
Kp_new = Kp + fuzzy_output(1);
Ki_new = Ki + fuzzy_output(2);
Kd_new = Kd + fuzzy_output(3);

% 更新控制器参数
fprintf('调整后的PID参数: Kp = %.2f, Ki = %.2f, Kd = %.2f\n', Kp_new, Ki_new, Kd_new);

参考文献

  1. 王辉, 李红. 模糊控制技术在飞行控制中的应用研究[J]. 现代控制工程, 2023, 45(2): 101-110.


http://www.kler.cn/a/307533.html

相关文章:

  • ARM架构中断与异常向量表机制解析
  • 【AI日记】24.11.14 复习和准备 RAG 项目 | JavaScript RAG Web Apps with LlamaIndex
  • 执行flink sql连接clickhouse库
  • 软件工程师简历(精选篇)
  • 基于Python的网上银行综合管理系统
  • 贪心算法day03(最长递增序列问题)
  • 基于SpringBoot+Vue+MySQL的教学资源共享平台
  • [C++]类和对象(上)
  • 携手鲲鹏,长亮科技加速银行核心系统升级
  • 7.Jmeter数据驱动(csv数据文件设置)+Jmeter数据库操作
  • 从零搭建 Docker 私有库
  • 【30天玩转python】多线程与多进程编程
  • 怎么把网站设置成HTTPS访问?
  • html+css网页制作 旅游 厦门旅游网3个页面
  • golang中连接达梦数据库使用域名来代替IP时会出现解析问题
  • c++ #include <cmath>介绍
  • TON智能合约stdlib_ext库:扩展功能一览
  • 一,掌心里的智慧:我的 TinyML 学习之旅
  • 类似mac dock的tab切换组件
  • 小琳AI课堂:LLaMA 3.1 开源大模型的全新里程碑
  • k8s的NodeIP、PodIP、ClusterIP、ExternalIP
  • 在 Java 中使用 bean 有什么好处
  • 通用四期ARM架构银河麒麟桌面操作系统V10【安装、配置FTP服务端】
  • Redis基础数据结构之 quicklist 和 listpack 源码解读
  • 棉花叶片病害检测数据集
  • Linux memcg lru lock提升锁性能