当前位置: 首页 > article >正文

使用随机森林模型在digits数据集上执行分类任务

程序功能

使用随机森林模型对digits数据集进行手写数字分类任务。具体步骤如下:
加载数据:从digits数据集中获取手写数字图片的特征和对应的标签。
划分数据:将数据集分为训练集和测试集,测试集占30%。
训练模型:使用随机森林算法训练分类模型。
进行预测:使用训练好的模型对测试集进行预测。
评估模型:输出模型的分类准确率和详细的分类报告,评估模型的分类效果。
在这里插入图片描述

代码

# 导入所需的库
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, classification_report

# 加载digits数据集
digits = load_digits()
X = digits.data  # 特征
y = digits.target  # 标签

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 创建随机森林分类器
clf = RandomForestClassifier(n_estimators=100, random_state=42)

# 训练模型
clf.fit(X_train, y_train)

# 预测测试集
y_pred = clf.predict(X_test)

# 评估模型
accuracy = accuracy_score(y_test, y_pred)
print(f"准确率: {accuracy:.2f}")

# 打印分类报告
print("分类报告:")
print(classification_report(y_test, y_pred, target_names=digits.target_names.astype(str)))


http://www.kler.cn/a/307906.html

相关文章:

  • 38配置管理工具(如Ansible、Puppet、Chef)
  • kubernetes简单入门实战
  • web安全测试渗透案例知识点总结(上)——小白入狱
  • 《Python网络安全项目实战》项目5 编写网站扫描程序
  • neo4j desktop基本入门
  • 大厂的 404 页面都长啥样?看看你都见过吗~~~
  • 基于鸿蒙API10的RTSP播放器(三:底部视频滑轨进度显示)
  • 基于python+django+vue的学生管理系统
  • Python 课程13-机器学习
  • CSS调整背景
  • 文档内容识别系统源码分享
  • 绘制简单的激波的图
  • 【数据结构】字符串与JSON字符串、JSON字符串及相应数据结构(如对象与数组)之间的相互转换
  • 基于深度学习,通过病理切片直接预测HPV状态|文献速递·24-09-16
  • web技术栈总体概念
  • 有关C# .NET Core 过滤器的使用
  • vue part 11
  • string的模拟实现and友元
  • Jacoco的XML报告详解
  • 链动321模式小程序开发源码
  • HTML 和 CSS
  • java项目之基于web的人力资源管理系统的设计与实现(源码+文档)
  • MySQL之安装与基础知识
  • R语言的基础知识R语言函数总结
  • reg和wire的区别 HDL语言
  • chapter14 数据结构与集合源码 知识点总结Note