当前位置: 首页 > article >正文

猫狗识别大模型——基于python语言

目录

1.猫狗识别

2.数据集介绍

3.猫狗识别核心原理

4.程序思路

4.1数据文件框架

 4.2 训练模型

4.3 模型使用

4.4 识别结果

5.总结


1.猫狗识别

人可以直接分辨出图片里的动物是猫还是狗,但是电脑不可以,要想让电脑也分辨出图片里的动物是猫还是小狗,就要使用到深度学习,电脑学习提取图片特征,进而学习区分图片里的是猫还是狗。

2.数据集介绍

程序用到的训练数据集是猫狗图像数据集,数据格式jpg格式,猫狗数据集:

https://www.kaggle.com/datasets/shaunthesheep/microsoft-catsvsdogs-dataset

 

3.猫狗识别核心原理

猫狗识别大模型是一种深度学习架构,主要用于图像分类任务,用来区分猫和狗这两种常见的宠物动物。

该模型基于卷积神经网络(CNN),它们通过学习大量的猫和狗图像数据集中的特征来进行训练,使其能够识别出输入图片中动物的种类。

训练过程中,模型会对猫的特有纹理、颜色模式、耳朵形状等特征进行学习,并形成区分猫狗的关键特征模板。一旦模型经过充分训练并优化,它可以准确地判断新的未知图片是属于猫还是狗。

应用此类模型的方式通常是将其部署到移动设备或者云端服务器上,用户上传一张照片后,模型会返回一个预测结果,指示图像中动物的类别。

4.程序思路

基于tensorflow模型框架以及卷积神经网络还有其他各种模块,划分训练集,微调集和测试机,对猫狗图片文件进行训练。

4.1数据文件框架

 4.2 训练模型

import tensorflow as tf
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout
from tensorflow.keras.optimizers import Adam
import matplotlib.pyplot as plt
import os

# 获取所有的GPU设备
gpus = tf.config.list_physical_devices('GPU')

# 检查是否有两个以上的GPU
if gpus and len(gpus) > 1:
    try:
        # 假设GPU1是独立GPU,设置可见设备为GPU1
        tf.config.set_visible_devices(gpus[1], 'GPU')
        tf.config.experimental.set_memory_growth(gpus[1], True)
    except RuntimeError as e:
        print(e)
else:
    print("没有检测到多个GPU,或者系统只存在一个GPU。")

# 定义数据目录
data_dir = './pythonProject/ai_modle_win/cats vs dogs/dataset'  # 请替换为你的数据集路径
train_dir = os.path.join(data_dir, 'train')
validation_dir = os.path.join(data_dir, 'validation')
test_dir = os.path.join(data_dir, 'test')

# 图像数据生成器
train_datagen = ImageDataGenerator(
    rescale=1./255,
    rotation_range=20,
    width_shift_range=0.2,
    height_shift_range=0.2,
    shear_range=0.2,
    zoom_range=0.2,
    horizontal_flip=True
)

validation_datagen = ImageDataGenerator(rescale=1./255)
test_datagen = ImageDataGenerator(rescale=1./255)

# 计算样本数量
def count_files(directory):
    total_files = 0
    for root, dirs, files in os.walk(directory):
        total_files += len(files)
    return total_files

train_samples = count_files(train_dir)
validation_samples = count_files(validation_dir)
test_samples = count_files(test_dir)

# 数据生成器
def create_generator(datagen, directory, target_size, batch_size, class_mode):
    generator = datagen.flow_from_directory(
        directory,
        target_size=target_size,
        batch_size=batch_size,
        class_mode=class_mode
    )
    # 包装生成器以处理损坏的图像文件
    while True:
        try:
            yield next(generator)
        except (OSError, StopIteration) as e:
            print(f"跳过无法读取的图像文件:{e}")
            continue

train_generator = create_generator(train_datagen, train_dir, (150, 150), 32, 'binary')
validation_generator = create_generator(validation_datagen, validation_dir, (150, 150), 32, 'binary')
test_generator = create_generator(test_datagen, test_dir, (150, 150), 32, 'binary')

# 定义模型
model = Sequential([
    Conv2D(32, (3, 3), activation='relu', input_shape=(150, 150, 3)),
    MaxPooling2D(2, 2),
    Conv2D(64, (3, 3), activation='relu'),
    MaxPooling2D(2, 2),
    Conv2D(128, (3, 3), activation='relu'),
    MaxPooling2D(2, 2),
    Conv2D(128, (3, 3), activation='relu'),
    MaxPooling2D(2, 2),
    Flatten(),
    Dropout(0.5),
    Dense(512, activation='relu'),
    Dense(1, activation='sigmoid')
])

model.compile(loss='binary_crossentropy',
              optimizer=Adam(learning_rate=0.001),
              metrics=['accuracy'])

# 训练模型
history = model.fit(
    train_generator,
    steps_per_epoch=train_samples // 32,  # 将结果转换为整数
    validation_data=validation_generator,
    validation_steps=validation_samples // 32,  # 将结果转换为整数
    epochs=5
)

# 保存模型
model.save('./pythonProject/ai_modle_win/cats vs dogs/cat_dog.h5')

# 评估模型
test_loss, test_acc = model.evaluate(test_generator, steps=test_samples // 32)
print(f'Test accuracy: {test_acc:.2f}')

# 可视化训练结果
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']

epochs = range(len(acc))

plt.figure(figsize=(12, 9))

plt.subplot(1, 2, 1)
plt.plot(epochs, acc, 'b', label='Training accuracy')
plt.plot(epochs, val_acc, 'r', label='Validation accuracy')
plt.title('Training and validation accuracy')
plt.legend()

plt.subplot(1, 2, 2)
plt.plot(epochs, loss, 'b', label='Training loss')
plt.plot(epochs, val_loss, 'r', label='Validation loss')
plt.title('Training and validation loss')
plt.legend()

plt.show()

注意更改文件路径!!!

4.3 模型使用

import tensorflow as tf
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image
import numpy as np
import os

# 加载已保存的模型
model = load_model('./pythonProject/ai_modle_win/cats vs dogs/cat_dog.h5')

# 预测函数
def predict_image(img_path):
    img = image.load_img(img_path, target_size=(150, 150))
    img_array = image.img_to_array(img)
    img_array = np.expand_dims(img_array, axis=0)
    img_array /= 255.0

    prediction = model.predict(img_array)
    if prediction[0] > 0.5:
        print(f"The image at {img_path} is a Dog")
    else:
        print(f"The image at {img_path} is a Cat")

# 示例用法
test_image_path = './pythonProject/ai_modle_win/cats vs dogs/30.jpg'  # 替换为你的测试图片路径
predict_image(test_image_path)

使用上述训练的模型进行图片识别,注意文件路径。

4.4 识别结果

5.总结

通过构造猫狗图片数据集,然后使用深度学习训练一个猫狗识别大模型,你也快来试一试吧。


http://www.kler.cn/a/307938.html

相关文章:

  • vue面试题7|[2024-11-14]
  • 量化交易系统开发-实时行情自动化交易-3.4.2.2.Okex交易数据
  • 数字后端教程之Innovus report_property和get_property使用方法及应用案例
  • 贪心算法day03(最长递增序列问题)
  • 响应式网页设计--html
  • neo4j desktop基本入门
  • C# WPF中实现深拷贝的五种方式
  • 商业银行零售业务数智运营探索与应用
  • BLE 协议之物理层
  • TCP核心机制
  • 数据结构(7.3_2)——平衡二叉树
  • iOS 18 适配 Xcode 16 问题
  • 线性代数(宋浩版)(4)
  • 基于Java、SpringBoot、Vue的加油站管理系统设计
  • 【Lua学习】Lua最最基础的
  • Hugging Face NLP课程学习记录 - 0. 安装transformers库 1. Transformer 模型
  • STM32+FATFS+SD卡+RTC(生成.CSV格式文件)
  • 代码随想录_刷题笔记_第一次
  • Invoke-Maldaptive:一款针对LDAP SearchFilter的安全分析工具
  • 文生视频算法
  • SprinBoot+Vue便民医疗服务微信小程序的设计与实现
  • 基于SpringBoot+Vue+MySQL的在线视频教育平台
  • OpenGL(四) 纹理贴图
  • Linux基础---10进程管理
  • YOLOv10:深度剖析与应用前景展望
  • 文章资讯职场话题网站源码整站资源自带2000+数据