当前位置: 首页 > article >正文

术语“in law”(在分布上)

在概率论和统计学中,术语“in law”(在分布上)指的是随机变量的分布收敛到某个目标分布的情况。下面是对这个概念及其在定理中的应用的详细解释


“In Law”(在分布上)的含义

定义:
如果 { Y n } \{Y_n\} {Yn}是一系列随机变量,并且它们的分布函数 F Y n ( x ) F_{Y_n}(x) FYn(x) 对于所有 x x x 收敛于某个目标分布函数 F Y ( x ) F_Y(x) FY(x),即:
lim ⁡ n → ∞ F Y n ( x ) = F Y ( x )  对于所有  x  使得  F Y ( x )  是连续的 , \lim_{n \to \infty} F_{Y_n}(x) = F_Y(x) \text{ 对于所有 } x \text{ 使得 } F_Y(x) \text{ 是连续的}, nlimFYn(x)=FY(x) 对于所有 x 使得 FY(x) 是连续的,
则我们说随机变量 Y n Y_n Yn 收敛于随机变量 Y Y Y 的分布,记作:
Y n → d Y Y_n \xrightarrow{d} Y Ynd Y

Y n → L Y Y_n \xrightarrow{L} Y YnL Y

定理 2.3.2 的含义

定理: 如果 Y n Y_n Yn 在分布上收敛于一个分布 H H H,那么 Y n Y_n Yn 是在概率上有界的。

解释:

  • 收敛在分布上(Convergence in Law/Distribution):表示随机变量 Y n Y_n Yn 的分布函数 F Y n ( x ) F_{Y_n}(x) FYn(x) 随着 n n n 的增大趋向于分布函数 F H ( x ) F_H(x) FH(x)

  • 概率上有界(Bounded in Probability):意味着存在一个常数 M M M,对于任意 ϵ > 0 \epsilon > 0 ϵ>0,都有:
    P ( ∣ Y n ∣ > M ) ≤ ϵ P(|Y_n| > M) \leq \epsilon P(Yn>M)ϵ
    Y n Y_n Yn 的绝对值不会超过 M M M 的概率可以使得小于任意的 ϵ \epsilon ϵ。这表明 Y n Y_n Yn 的值在概率上被控制在某个有限范围内。

为何“in law”意味着概率上有界

虽然“在分布上收敛”说明了分布的收敛性,但定理中指出,如果 Y n Y_n Yn 的分布收敛于某个目标分布 H H H,那么 Y n Y_n Yn 必定在概率上有界。这意味着虽然随机变量的分布变化,但是它们的值在某个有限范围内的概率趋向于1,不会无限增大。


http://www.kler.cn/a/310893.html

相关文章:

  • 【算法一周目】双指针(2)
  • java八股-jvm入门-程序计数器,堆,元空间,虚拟机栈,本地方法栈,类加载器,双亲委派,类加载执行过程
  • Django基础用法+Demo演示
  • JWT深度解析:Java Web中的安全传输与身份验证
  • C#发票识别、发票查验接口集成、电子发票(航空运输电子行程单)
  • 基于迭代重加权最小二乘法的算法及例程
  • oracle表的类型
  • 当 PC 端和移动端共用一个域名时,避免 CDN 缓存页面混乱(nginx)
  • 基于MATLAB/Simulink的模型降阶方法介绍
  • Unity射击游戏开发教程:(36)敌人关卡生成器的设计和开发
  • 【STM32系统】基于STM32设计的DAC输出电压与ADC检测电压系统(简易万用表,检测电压电流)——文末工程资料下载
  • IP协议及相关特性
  • 理解AAC和Opus的编码与解码流程
  • 企业导师面对面,产教融合实训基地搭建人才成长快车道
  • 掌握RESTful API设计:构建高效、可扩展的Web服务
  • Android Studio报错: Could not find pub.devrel:easypermissions:0.3.0, 改用linux编译
  • 在线考试|基于java的模拟考试系统小程序(源码+数据库+文档)
  • Modbus_RTU和Modbus库
  • 1.Seata 1.5.2 seata-server搭建
  • 线程池的类型和状态
  • sqli-labs靶场自动化利用工具——第11关
  • 【深度学习】(2)--PyTorch框架认识
  • 设计模式(Design Patterns)
  • springBoot整合mybatisplus
  • 学习风格的类型
  • 内核是如何接收网络包的