动手学习RAG: 迟交互模型colbert微调实践 bge-m3
- 动手学习RAG: 向量模型
- 动手学习RAG: BGE向量模型微调实践]()
- 动手学习RAG: BCEmbedding 向量模型 微调实践]()
- 动手学习RAG: moka-ai/m3e 模型微调deepspeed与对比学习
- 动手学习RAG: 大模型向量模型微调 intfloat/e5-mistral-7b-instruct
- 动手学习RAG:大模型重排模型 bge-reranker-v2-gemma微调
- BCE ranking 微调实践]()
- GTE向量与排序模型 微调实践]()
- 模型微调中的模型序列长度]()
- 相似度与温度系数
本文我们来进行ColBERT模型的实践,按惯例,还是以open-retrievals中的代码为蓝本。在RAG兴起之后,ColBERT也获得了更多的关注。ColBERT整体结构和双塔特别相似,但迟交互式也就意味着比起一般ranking模型,交互来的更晚一些。
1. 准备环境
pip install transformers
pip install open-retrievals
- 注意安装时是
pip install open-retrievals
,但调用时只需要import retrievals
- 欢迎关注最新的更新 https://github.com/LongxingTan/open-retrievals
2. 准备数据
还是采用C-MTEB/T2Reranking数据。
- 每个样本有query, positive, negative。其中query和positive构成正样本对,query和negative构成负样本对
3. 使用m3-ColBERT模型
由于ColBERT作为迟交互式模型,既可以像向量模型一样生成向量,也可以计算相似度。BAAI/bge-m3中的colbert模型是基于XLMRoberta训练而来,因此使用ColBERT可以直接从bge-m3中加载预训练权重。
import transformers
from retrievals import ColBERT
model_name_or_path: str = 'BAAI/bge-m3'
model = ColBERT.from_pretrained(
model_name_or_path,
colbert_dim=1024,
use_fp16=True,
loss_fn=ColbertLoss(use_inbatch_negative=True),
)
model
- 生成向量的方法
sentences_1 = ["In 1974, I won the championship in Southeast Asia in my first kickboxing match", "In 1982, I defeated the heavy hitter Ryu Long."]
sentences_2 = ['A dog is chasing car.', 'A man is playing a guitar.']
output_1 = model.encode(sentences_1, normalize_embeddings=True)
print(output_1.shape, output_1)
output_2 = model.encode(sentences_2, normalize_embeddings=True)
print(output_2.shape, output_2)
- 计算句子对 相似度的方法
sentences = [
["In 1974, I won the championship in Southeast Asia in my first kickboxing match", "In 1982, I defeated the heavy hitter Ryu Long."],
["In 1974, I won the championship in Southeast Asia in my first kickboxing match", 'A man is playing a guitar.'],
]
scores_list = model.compute_score(sentences)
print(scores_list)
4. 微调
尝试了两种方法来做,一种是调包自己写代码,一种是采用open-retrievals中的代码写shell脚本。这里我们采用第一种,另外一种方法可参考文章最后番外中的微调
import transformers
from transformers import AutoTokenizer, TrainingArguments, get_cosine_schedule_with_warmup, AdamW
from retrievals import AutoModelForRanking, RerankCollator, RerankTrainDataset, RerankTrainer, ColBERT, RetrievalTrainDataset, ColBertCollator
from retrievals.losses import ColbertLoss
transformers.logging.set_verbosity_error()
model_name_or_path: str = 'BAAI/bge-m3'
learning_rate: float = 1e-5
batch_size: int = 2
epochs: int = 1
output_dir: str = './checkpoints'
train_dataset = RetrievalTrainDataset(
'C-MTEB/T2Reranking', positive_key='positive', negative_key='negative', dataset_split='dev'
)
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=False)
data_collator = ColBertCollator(
tokenizer,
query_max_length=64,
document_max_length=128,
positive_key='positive',
negative_key='negative',
)
model = ColBERT.from_pretrained(
model_name_or_path,
colbert_dim=1024,
loss_fn=ColbertLoss(use_inbatch_negative=False),
)
optimizer = AdamW(model.parameters(), lr=learning_rate)
num_train_steps = int(len(train_dataset) / batch_size * epochs)
scheduler = get_cosine_schedule_with_warmup(optimizer, num_warmup_steps=0.05 * num_train_steps, num_training_steps=num_train_steps)
training_args = TrainingArguments(
learning_rate=learning_rate,
per_device_train_batch_size=batch_size,
num_train_epochs=epochs,
output_dir = './checkpoints',
remove_unused_columns=False,
gradient_accumulation_steps=8,
logging_steps=100,
)
trainer = RerankTrainer(
model=model,
args=training_args,
train_dataset=train_dataset,
data_collator=data_collator,
)
trainer.optimizer = optimizer
trainer.scheduler = scheduler
trainer.train()
model.save_pretrained(output_dir)
训练过程中会加载BAAI/bge-m3
模型权重
损失函数下降
{'loss': 7.4858, 'grad_norm': 30.484981536865234, 'learning_rate': 4.076305220883534e-06, 'epoch': 0.6024096385542169}
{'loss': 1.18, 'grad_norm': 28.68316650390625, 'learning_rate': 3.072289156626506e-06, 'epoch': 1.2048192771084336}
{'loss': 1.1399, 'grad_norm': 14.203865051269531, 'learning_rate': 2.068273092369478e-06, 'epoch': 1.8072289156626506}
{'loss': 1.1261, 'grad_norm': 24.30337905883789, 'learning_rate': 1.0642570281124499e-06, 'epoch': 2.4096385542168672}
{'train_runtime': 471.8191, 'train_samples_per_second': 33.827, 'train_steps_per_second': 1.055, 'train_loss': 2.4146631079984, 'epoch': 3.0}
5. 评测
在C-MTEB中进行评测。微调前保留10%的数据集作为测试集验证
from datasets import load_dataset
dataset = load_dataset("C-MTEB/T2Reranking", split="dev")
ds = dataset.train_test_split(test_size=0.1, seed=42)
ds_train = ds["train"].filter(
lambda x: len(x["positive"]) > 0 and len(x["negative"]) > 0
)
ds_train.to_json("t2_ranking.jsonl", force_ascii=False)
微调前的指标:
微调后的指标:
{
"dataset_revision": null,
"mteb_dataset_name": "CustomReranking",
"mteb_version": "1.1.1",
"test": {
"evaluation_time": 221.45,
"map": 0.6950128151840831,
"mrr": 0.8193114944390455
}
}
番外:从语言模型直接训练ColBERT
之前的例子里是从BAAI/bge-m3继续微调,这里再跑一个从hfl/chinese-roberta-wwm-ext训练一个ColBERT模型
- 注意,从头跑需要设置更大的学习率与更多的epochs
MODEL_NAME='hfl/chinese-roberta-wwm-ext'
TRAIN_DATA="/root/kaggle101/src/open-retrievals/t2/t2_ranking.jsonl"
OUTPUT_DIR="/root/kaggle101/src/open-retrievals/t2/ft_out"
cd /root/open-retrievals/src
torchrun --nproc_per_node 1 \
--module retrievals.pipelines.rerank \
--output_dir $OUTPUT_DIR \
--overwrite_output_dir \
--model_name_or_path $MODEL_NAME \
--tokenizer_name $MODEL_NAME \
--model_type colbert \
--do_train \
--data_name_or_path $TRAIN_DATA \
--positive_key positive \
--negative_key negative \
--learning_rate 5e-5 \
--bf16 \
--num_train_epochs 5 \
--per_device_train_batch_size 32 \
--dataloader_drop_last True \
--query_max_length 128 \
--max_length 256 \
--train_group_size 4 \
--unfold_each_positive false \
--save_total_limit 1 \
--logging_steps 100 \
--use_inbatch_negative False
微调后指标
{
"dataset_revision": null,
"mteb_dataset_name": "CustomReranking",
"mteb_version": "1.1.1",
"test": {
"evaluation_time": 75.38,
"map": 0.6865308507184888,
"mrr": 0.8039965986394558
}
}