当前位置: 首页 > article >正文

【BEV 视图变换】Ray-based(2): 代码复现+画图解释 基于深度估计、bev_pool

paper:Lift, Splat, Shoot: Encoding Images from Arbitrary Camera Rigs by Implicitly Unprojecting to 3D
code:https://github.com/nv-tlabs/lift-splat-shoot

一、完整复现代码(可一键运行)和效果图

在这里插入图片描述

import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import cv2
import numpy as np

# 根据世界坐标范围和一个像素代表的世界坐标距离来计算bev_size
# dx:[0.5,0.5,20]代表单位长度,bx是[-49.75,49.75,0]代表起始网格点的中心,nx[200,200,1] 代表网格数目
xbound = [-50.0, 50.0, 0.5]  # 前后100米,1个pixel=0.5米 -> x方向: 200 pixel
ybound = [-50.0, 50.0, 0.5]  # 左右100米,1个pixel=0.5米 -> y方向: 200 pixel
zbound = [-10.0, 10.0, 20.0]  # 上下20米, 1个pixel=20米  -> z方向: 1   pixel
dbound = [4.0, 45.0, 1.0]  # 深度4~45米, 1个pixel=1米 -> d方向: 41  pixel
D_ = int((dbound[1]-dbound[0])/dbound[2])

def gen_dx_bx(xbound, ybound, zbound):
    dx = torch.Tensor([row[2] for row in [xbound, ybound, zbound]])
    bx = torch.Tensor([row[0] + row[2]/2.0 for row in [xbound, ybound, zbound]])
    nx = torch.LongTensor([(row[1] - row[0]) / row[2] for row in [xbound, ybound, zbound]])
    dx = nn.Parameter(dx, requires_grad=False)
    bx = nn.Parameter(bx, requires_grad=False)
    nx = nn.Parameter(nx, requires_grad=False)
    return dx, bx, nx

batch_size = 1
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# 模型输入尺寸及下采样倍数
in_H = 128
in_W = 352
scale_downsample = 16
# 模型输出尺寸
feat_W16 = in_W // scale_downsample
feat_H16 = in_H // scale_downsample
semantic_channels = 64

# 相机参数(两个相机)
num_cams = 2
rots=torch.Tensor([[[[ 8.2076e-01, -3.4144e-04,  5.7128e-01],[-5.7127e-01,  3.2195e-03,  8.2075e-01],[-2.1195e-03, -9.9999e-01,  2.4474e-03]],
         [[-9.3478e-01,  0, 0],[ 3.5507e-01,  0, -9.3477e-01],[-1.0805e-02, -9.9981e-01, 0]]]])
intrins = torch.Tensor([[[[1.2726e+03, 0.0, 0],[0.0000e+00, 1.2726e+03, 4.7975e+02],[0.0000e+00, 0.0000e+00, 1.0000e+00]],
         [[1.2595e+03, 0.0000e+00, 8.0725e+02], [0.0000e+00, 1.2595e+03, 5.0120e+02],[0.0000e+00, 0.0000e+00, 1.0000e+00]]]])
post_rots = torch.Tensor([[[[0.2200, 0.0000, 0.0000],[0.0000, 0.2200, 0.0000],[0.0000, 0.0000, 1.0000]],
         [[0.2200, 0.0000, 0.0000],[0.0000, 0.2200, 0.0000],[0.0000, 0.0000, 1.0000]]]])
post_trans =torch.Tensor([[[  0.],[  0.]], [[0.], [0.]], [[  0.],[  0.]]])
trans = torch.Tensor([[[ 1.5239,  0.4946,  1.5093], [ 1.0149, -0.4806,  1.5624]]])

def create_uvd_frustum():

    # 41米深度范围,值在[4,45]
    # 扩展至41x22x8
    distance = torch.arange(*dbound, dtype=torch.float).view(-1, 1, 1).expand(-1, feat_H16, feat_W16)
    D, _, _ = distance.shape
    # 22格,值在[0,128]
    # 再扩展至[41,8,22]
    x_stride = torch.linspace(0, in_W - 1, feat_W16, dtype=torch.float).view(1, 1, feat_W16).expand(D, feat_H16, feat_W16)
    # 8格,值在[0,352]
    # 再扩展至[41,8,22]
    y_stride = torch.linspace(0, in_H - 1, feat_H16, dtype=torch.float).view(1, feat_H16, 1).expand(D, feat_H16, feat_W16)
    # 创建视锥: [41,8,22,3]
    frustum = torch.stack((x_stride, y_stride, distance), -1)
    # 不计算梯度,不需要学习
    return nn.Parameter(frustum, requires_grad=False)

def plot_uvd_frustum(frustum): # 41 8 22 3
    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')

    # Convert frustum tensor to numpy array for visualization
    frustum_np = frustum.numpy()

    # Extract x, y, d coordinates
    x = frustum_np[..., 0].flatten()
    y = frustum_np[..., 1].flatten()
    d = frustum_np[..., 2].flatten()

    # Plot the points in 3D space
    ax.scatter(x, y, d, c=d, cmap='viridis', marker='o')
    ax.set_xlabel('u')
    ax.set_ylabel('v')
    ax.set_zlabel('d')
    plt.show()
    path = f'uvd_frustum.png'
    plt.savefig(path)

def get_geometry_feat(frustum,rots, trans, intrins, post_rots, post_trans):
    B, N, _ = trans.shape
    # 视锥逆数据增强
    points = frustum - post_trans.view(B, N, 1, 1, 1, 3)
    # 加上B,N(6 cams)维度
    points = torch.inverse(post_rots).view(B, N, 1, 1, 1, 3, 3).matmul(points.unsqueeze(-1))
    #根据相机内外参将视锥点云从相机坐标映射到世界坐标
    points = torch.cat((points[:, :, :, :, :, :2] * points[:, :, :, :, :, 2:3],points[:, :, :, :, :, 2:3]), 5)
    combine = rots.matmul(torch.inverse(intrins))
    points = combine.view(B, N, 1, 1, 1, 3, 3).matmul(points).squeeze(-1)
    points += trans.view(B, N, 1, 1, 1, 3)
    return points

def plot_XYZ_frustum(frustum,path):
    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')
    # Convert frustum tensor to numpy array for visualization
    for i in range(len(frustum)):
        frustum_np = frustum[i].numpy()
        # Extract x, y, d coordinates
        x = frustum_np[..., 0].flatten()
        y = frustum_np[..., 1].flatten()
        d = frustum_np[..., 2].flatten()
        # Plot the points in 3D space
        ax.scatter(x, y, d, c=d, cmap='viridis', marker='o')
    ax.set_xlabel('X')
    ax.set_ylabel('Y')
    ax.set_zlabel('Z')
    plt.show()
    plt.savefig(path)

def cumsum_trick(cam_feat, geom_feat, ranks):
    # 最后一个维度累计,前缀和
    cam_feat = cam_feat.cumsum(0)
    # 过滤
    # [42162,64]->[7268,64] [42162,4]->[7268,4]
    # 将rank错位比较,找到rank中 == voxel_id == 发生变化的位置,记为kept
    kept = torch.ones(cam_feat.shape[0], device=cam_feat.device, dtype=torch.bool)
    kept[:-1] = (ranks[1:] != ranks[:-1])
    # 利用kept筛选得到x, 错位相减,从而实现将落在相同voxel特征求和
    cam_feat, geom_feat = cam_feat[kept], geom_feat[kept]
    cam_feat = torch.cat((cam_feat[:1], cam_feat[1:] - cam_feat[:-1])) # 错位相减得到的特征和
    return cam_feat, geom_feat


def plot_bev(bev, name = f'bev'):
    # ---- tensor -> array ----#
    array1 = bev.squeeze(0).cpu().detach().numpy()
    # ---- array -> mat ----#
    array1 = array1 * 255
    mat = np.uint8(array1)
    mat = mat.transpose(1, 2, 0)
    # ---- vis ----#
    cv2.imshow(name, mat)
    cv2.waitKey(0)



if __name__ == "__main__":
    # 1.创建三维tensor(2d image + depth)
    uvd_frustum = create_uvd_frustum()
    plot_uvd_frustum(uvd_frustum)

    # 2.视锥化(使用相机内外参,将三维tensor转到EGO坐标系下)
    XYZ_frustum = get_geometry_feat(uvd_frustum,rots, trans, intrins, post_rots, post_trans)
    plot_XYZ_frustum(XYZ_frustum[0],path = f'EGO_XYZ_frustum.png')

    # 3.体素化
    dx, bx, nx = gen_dx_bx(xbound, ybound, zbound)
    geom_feats = ((XYZ_frustum - (bx - dx / 2.)) / dx).long()
    plot_XYZ_frustum(geom_feats[0], path = f'voxel.png')

    # 4.bev_pool
    # 4.1. cam_feats,geom_feats 展平
    cam_feats = torch.rand(batch_size, num_cams, D_, feat_H16, feat_W16, semantic_channels)
    B, N, D, H, W, C = cam_feats.shape
    L__ = B * N * D * H * W
    cam_feats = cam_feats.reshape(L__, C)

    geom_feats = geom_feats.view(L__, 3)

    # 4.2.geom_feat增加batch维度
    batch_index = torch.cat([torch.full([L__ // B, 1], ix, device=cam_feats.device, dtype=torch.long) for ix in range(B)])
    geom_feats = torch.cat((geom_feats, batch_index), 1)

    # 4.3.filter by (X<200,Y<200,Z<1)
    kept = (geom_feats[:, 0] >= 0) & (geom_feats[:, 0] < nx[0]) & (geom_feats[:, 1] >= 0) & (geom_feats[:, 1] < nx[1]) & (geom_feats[:, 2] >= 0) & (geom_feats[:, 2] < nx[2])
    cam_feats = cam_feats[kept]
    geom_feats = geom_feats[kept]

    # 4.4.voxel index 位置编码,排序
    ranks = (geom_feats[:, 0] * (nx[1] * nx[2] * B)  # X
             + geom_feats[:, 1] * (nx[2] * B)  # Y
             + geom_feats[:, 2] * B  # Z
             + geom_feats[:, 3])  # batch_index
    sorts = ranks.argsort()
    cam_feats, geom_feats, ranks = cam_feats[sorts], geom_feats[sorts], ranks[sorts]

    # 4.5. sum
    cam_feats, geom_feats = cumsum_trick(cam_feats, geom_feats, ranks)

    # 4.6.根据视锥获取相应的cam_feat, final:[1,64,1,200,200]
    final = torch.zeros((B, C, nx[2], nx[0], nx[1]), device=cam_feats.device)
    final[geom_feats[:, 3], :, geom_feats[:, 2], geom_feats[:, 0], geom_feats[:, 1]] = cam_feats

    # 4.7.去掉Z维度, dim_Z维度属于dim=2, 生成bev图
    final = torch.cat(final.unbind(dim=2), 1)

    # 5.bev_encoder
    bev_encoder = nn.Conv2d(semantic_channels, 1, kernel_size=1, stride=1, padding=0,bias=False)
    bev = bev_encoder(final)
    plot_bev(bev, name = f'bev')

二、逐步代码讲解+图解

完整流程:
1.创建uv coord + depth estimation (2d image + depth)
2.视锥化(uv coord -> world coord) (根据相机内外参,构建4x3的投影矩阵)
3.体素化(world coord -> voxel coord) (会有到世界范围划分及各自维度的刻度)
4.bev_pool(voxel coord -> bev coord)(去掉Z轴)

1.创建uv coord + depth estimation (2d image + depth)

uvd_frustum = create_uvd_frustum()
plot_uvd_frustum(uvd_frustum)

在这里插入图片描述
注意
1.坐标范围,u,v范围代表模型输入尺寸(352,128),d范围为(4,45)。
2.u轴有22个柱子(pillar),22=352//16;v轴有8个柱子(pillar),8=128//16;d轴有41个刻度,41=(45-4)//1

2.视锥化(uv coord -> world coord) (根据相机内外参,构建4x3的投影矩阵)

XYZ_frustum = get_geometry_feat(uvd_frustum,rots, trans, intrins, post_rots, post_trans)
plot_XYZ_frustum(XYZ_frustum[0],path = f'EGO_XYZ_frustum.png')

在这里插入图片描述
我这里为了看起来更直观点,选了两个相机,实际在使用过程中,可以灵活使用1个,2个,4个,6个相机。

3.体素化(world coord -> voxel coord) (会有到世界范围划分及各自维度的刻度)

dx, bx, nx = gen_dx_bx(xbound, ybound, zbound)
geom_feats = ((XYZ_frustum - (bx - dx / 2.)) / dx).long()
plot_XYZ_frustum(geom_feats[0], path = f'voxel.png')

在这里插入图片描述
为什么上面和下面的形状不一样呢?因为1.相机内外参数的影响 2.因为(旋转,平移)数据增强的影响
注意观察,此时的XYZ轴的范围已经落在(200,200,1)的bev尺寸范围里了!

4.bev_pool(voxel coord -> bev coord)(去掉Z轴)

  • 4.1. cam_feats,geom_feats 展平
cam_feats = torch.rand(batch_size, num_cams, D_, feat_H16, feat_W16, semantic_channels)
B, N, D, H, W, C = cam_feats.shape
L__ = B * N * D * H * W
cam_feats = cam_feats.reshape(L__, C)

geom_feats = geom_feats.view(L__, 3)
  • 4.2.geom_feat增加batch维度
batch_index = torch.cat([torch.full([L__ // B, 1], ix, device=cam_feats.device, dtype=torch.long) for ix in range(B)])
geom_feats = torch.cat((geom_feats, batch_index), 1)
  • 4.3.filter by (X<200,Y<200,Z<1)
kept = (geom_feats[:, 0] >= 0) & (geom_feats[:, 0] < nx[0]) & (geom_feats[:, 1] >= 0) & (geom_feats[:, 1] < nx[1]) & (geom_feats[:, 2] >= 0) & (geom_feats[:, 2] < nx[2])
cam_feats = cam_feats[kept]
geom_feats = geom_feats[kept]

在这里插入图片描述

  • 4.4.voxel index 位置编码,排序
ranks = (geom_feats[:, 0] * (nx[1] * nx[2] * B)  # X
         + geom_feats[:, 1] * (nx[2] * B)  # Y
         + geom_feats[:, 2] * B  # Z
         + geom_feats[:, 3])  # batch_index
sorts = ranks.argsort()
cam_feats, geom_feats, ranks = cam_feats[sorts], geom_feats[sorts], ranks[sorts]

可以参考我画的示意图
在这里插入图片描述

  • 4.5. sum
cam_feats, geom_feats = cumsum_trick(cam_feats, geom_feats, ranks)
  • 4.6.根据视锥获取相应的cam_feat, final:[1,64,1,200,200]
final = torch.zeros((B, C, nx[2], nx[0], nx[1]), device=cam_feats.device)
final[geom_feats[:, 3], :, geom_feats[:, 2], geom_feats[:, 0], geom_feats[:, 1]] = cam_feats
  • 4.7.去掉Z维度, dim_Z维度属于dim=2, 生成bev图
final = torch.cat(final.unbind(dim=2), 1)

5.bev_encoder

bev_encoder = nn.Conv2d(semantic_channels, 1, kernel_size=1, stride=1, padding=0,bias=False)
bev = bev_encoder(final)
plot_bev(bev, name = f'bev')

在这里插入图片描述
bev尺寸为200x200


http://www.kler.cn/news/315615.html

相关文章:

  • MoveIt控制机械臂的运动实现——机器人抓取系统基础系列(二)
  • 带你0到1之QT编程:十七、Http协议实战,实现一个简单服务器和一个客户端进行http协议通信
  • 校园美食发现:Spring Boot技术的美食社交平台
  • Flyway 版本迁移文件
  • 【Kubernetes】常见面试题汇总(三十二)
  • Docker 系列完结
  • SparkSQL和Spark常用语句
  • Go语言并发编程:从理论到实践
  • QT widgets 窗口缩放,自适应窗口大小进行布局
  • 【鸿蒙OH-v5.0源码分析之 Linux Kernel 部分】003 - vmlinux.lds 链接脚本文件源码分析
  • 第k个排列 - 华为OD统一考试(E卷)
  • 跟着问题学12——GRU详解
  • Lucene详解介绍以及底层原理说明
  • 如何在Linux Centos7系统中挂载群晖共享文件夹
  • 心理辅导平台的构建:Spring Boot技术解析
  • 深度学习-从零基础快速入门到项目实践,这本书上市了!!!
  • 828华为云征文|部署知识库问答系统 MaxKB
  • 【文献阅读】基于原型的自适应方法增强未见到的构音障碍者的语音识别
  • 分布式消息中间件kafka
  • Google深度学习的图像生成大模型Imagen
  • Java接口和抽象类的区别
  • calibre-web报错:File type isn‘t allowed to be uploaded to this server
  • Ubuntu20.04配置NVIDIA+CUDA12.2+CUDNN【附所有下载资源】【亲测有效】【非常详细】
  • 设计模式-依赖注入
  • Mac剪贴板历史全记录!
  • 单片机的信号线都需要差分布放吗?
  • turtle实现贪吃蛇小游戏
  • 【鼠标滚轮专用芯片】KTH57913D 霍尔位置传感器
  • 面试题(二)
  • 大学生请码住!分享10款AI论文工具搞定论文开题到答辩全过程!