当前位置: 首页 > article >正文

深入浅出:Eclipse 中配置 Maven 与 Spark 应用开发全指南

Spark

  1. 安装配置

1.在 Eclipse 中配置 Maven

        Eclipse 中默认自带 Maven 插件,但是自带的 Maven 插件不能修改本地仓库,所

以通常我们不使用自带的 Maven ,而是使用自己安装的,在 Eclipse 中配置 Maven 的

步骤如下:

1) 点击 Eclipse 中的 Window → Preferences

2) 点开 Maven 前面的箭头,选择 Installations,点击 Add…

3) 点击 Directory…选择我们安装的 Maven 核心程序的根目录,然后点击 Finish

4) 勾上添加的 Maven 核心程序

5) 选择 Maven 下的 User Settings ,在全局设置哪儿点击 Browse… 选择 Maven

核心程序的配置文件 settings.xml ,本地仓库会自动变为我们在 settings.xml

文件中设置的路径

修改setting内容:

<profile>

      <id>jdk-1.8</id>

        <activation>

                 <activeByDefault>true</activeByDefault>

                <jdk>1.8</jdk>

        </activation>

<properties>

<maven.compiler.source>1.8</maven.compiler.source>

<maven.compiler.target>1.8</maven.compiler.target>

<maven.compiler.compilerversion>1.8</maven.compiler.compilerversion>

</properties>

</profile>

2. 在 Eclipse 中创建 Maven 项目

2.1 创建 Java 工程

1) 点击 File → New → Maven Project ,弹出如下窗口

2) 点击 Next,配置坐标(GAV)及打包方式,然后点击 Finish

group id:组织id

artifact id:项目名字

version:版本

package:java包名

3) 创建成功后, 配置 Maven 的核心配置文件 pom.xml 文件

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">

  <modelVersion>4.0.0</modelVersion>

  <groupId>me.spark.app</groupId>

  <artifactId>playersStats</artifactId>

  <version>1.0</version>

  <name>playersStats</name>

  <!-- FIXME change it to the project's website -->

  <url>http://www.example.com</url>

  <properties>

    <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

    <maven.compiler.source>1.8</maven.compiler.source>

    <maven.compiler.target>1.8</maven.compiler.target>

  </properties>

  <dependencies>

    <!-- https://mvnrepository.com/artifact/org.apache.maven.plugins/maven-assembly-plugin -->

        <dependency>

      <groupId>org.apache.maven.plugins</groupId>

      <artifactId>maven-assembly-plugin</artifactId>

      <version>3.3.0</version>

    </dependency>

      <!-- https://mvnrepository.com/artifact/org.apache.spark/spark-core -->

      <dependency>

      <groupId>org.apache.spark</groupId>

      <artifactId>spark-core_2.12</artifactId>

      <version>3.0.0</version>

    </dependency>

    <!-- https://mvnrepository.com/artifact/org.apache.spark/spark-sql -->

        <dependency>

      <groupId>org.apache.spark</groupId>

      <artifactId>spark-sql_2.12</artifactId>

      <version>3.0.0</version>

    </dependency>

  </dependencies>

  <build>

        <plugins>

        <plugin>

            <artifactId>maven-assembly-plugin</artifactId>

            <version>3.3.0</version>

            <configuration>

          <descriptorRefs>

            <descriptorRef>jar-with-dependencies</descriptorRef>

          </descriptorRefs>

        <archive>

          <manifest>

            <mainClass>me.spark.app.playersStats.Main</mainClass>

          </manifest>

        </archive>

        </configuration>

        <executions>

            <execution>

                <id>make-assembly</id> <!-- this is used for inheritance merges -->

                <phase>package</phase> <!-- bind to the packaging phase -->

                <goals>

                <goal>single</goal>

                </goals>

            </execution>

        </executions>

      </plugin>

    </plugins>

  </build>

</project>

  1. 模板

1. Spark 应用基本模板

这是 Spark 应用程序的基本结构,适用于所有 Spark 程序的起点。

import org.apache.spark.sql.SparkSession;



public class MySparkApp {

    public static void main(String[] args) {

        // 创建 SparkSession,应用程序入口

        SparkSession spark = SparkSession.builder()

                .appName("MySparkApp")

                .master("local")  // 本地模式

                .getOrCreate();



        // 你的 Spark 代码在这里编写



        // 关闭 SparkSession

        spark.stop();

    }

}

2. DataFrame 操作模板

DataFrame 是 Spark 进行结构化数据处理的核心 API,特别适合处理 CSV、JSON、Parquet 等格式的文件。以下是通过 DataFrame 进行数据处理的模板。

import org.apache.spark.sql.Dataset;

import org.apache.spark.sql.Row;

import org.apache.spark.sql.SparkSession;

import static org.apache.spark.sql.functions.*;



public class MyDataFrameApp {

    public static void main(String[] args) {

        // 创建 SparkSession

        SparkSession spark = SparkSession.builder()

                .appName("DataFrameExample")

                .master("local")

                .getOrCreate();



        // 读取 CSV 文件为 DataFrame

        Dataset<Row> df = spark.read()

                .option("header", "true") // 是否包含头部

                .option("inferSchema", "true") // 自动推断列类型

                .csv("path/to/your/csvfile.csv");



        // 打印 DataFrame 的结构

        df.printSchema();

       

        // 显示前20行数据

        df.show();



        // 数据处理:计算某列的平均值

        df.groupBy("column_name")

          .agg(avg("another_column").alias("average_value"))

          .show();



        // 关闭 SparkSession

        spark.stop();

    }

}

3. RDD 操作模板

RDD(Resilient Distributed Dataset)是 Spark 的底层 API,适合处理非结构化数据,特别是在数据量较大时。以下是通过 RDD 进行数据处理的模板。

import org.apache.spark.api.java.JavaRDD;

import org.apache.spark.api.java.JavaSparkContext;

import org.apache.spark.SparkConf;



public class MyRDDApp {

    public static void main(String[] args) {

        // 配置 Spark

        SparkConf conf = new SparkConf().setAppName("RDDExample").setMaster("local");

        JavaSparkContext sc = new JavaSparkContext(conf);



        // 读取文本文件为 RDD

        JavaRDD<String> lines = sc.textFile("path/to/your/file.txt");



        // 简单的 WordCount 示例

        JavaRDD<String> words = lines.flatMap(line -> Arrays.asList(line.split(" ")).iterator());

        JavaRDD<Tuple2<String, Integer>> wordCounts = words.mapToPair(word -> new Tuple2<>(word, 1))

                .reduceByKey((a, b) -> a + b);



        // 打印结果

        wordCounts.collect().forEach(System.out::println);



        // 关闭 SparkContext

        sc.close();

    }

}

4. Spark SQL 模板

Spark SQL 允许你使用 SQL 查询来处理结构化数据。以下是 Spark SQL 的使用模板,适合数据分析任务。

import org.apache.spark.sql.Dataset;

import org.apache.spark.sql.Row;

import org.apache.spark.sql.SparkSession;



public class MySQLApp {

    public static void main(String[] args) {

        // 创建 SparkSession

        SparkSession spark = SparkSession.builder()

                .appName("SQLExample")

                .master("local")

                .getOrCreate();



        // 读取 CSV 文件为 DataFrame

        Dataset<Row> df = spark.read()

                .option("header", "true")

                .option("inferSchema", "true")

                .csv("path/to/your/csvfile.csv");



        // 注册临时表

        df.createOrReplaceTempView("my_table");



        // 使用 SQL 查询数据

        Dataset<Row> result = spark.sql("SELECT column_name, COUNT(*) FROM my_table GROUP BY column_name");



        // 显示查询结果

        result.show();



        // 关闭 SparkSession

        spark.stop();

    }

}

5. 数据读取与写入模板

Spark 支持多种数据源的读取和写入,如 CSV、JSON、Parquet、JDBC 等。以下是常见的读取和写入数据的操作模板。

读取 CSV 数据
Dataset<Row> df = spark.read()

        .option("header", "true")

        .option("inferSchema", "true")

        .csv("path/to/csvfile.csv");
读取 JSON 数据
Dataset<Row> df = spark.read()

        .json("path/to/jsonfile.json");
读取 Parquet 数据
Dataset<Row> df = spark.read()

        .parquet("path/to/parquetfile.parquet");
写入数据到 CSV 文件
df.write()

  .option("header", "true")

  .csv("path/to/output_csv/");
写入数据到 Parquet 文件
df.write()

  .parquet("path/to/output_parquet/");

6. Spark Streaming 模板

Spark Streaming 处理实时流数据。以下是通过 Spark Streaming 进行数据处理的模板。

import org.apache.spark.SparkConf;

import org.apache.spark.streaming.Durations;

import org.apache.spark.streaming.api.java.JavaStreamingContext;



public class MyStreamingApp {

    public static void main(String[] args) throws InterruptedException {

        // 配置 Spark Streaming

        SparkConf conf = new SparkConf().setAppName("StreamingExample").setMaster("local[2]");

        JavaStreamingContext streamingContext = new JavaStreamingContext(conf, Durations.seconds(1));



        // 监听 socket 数据源

        JavaReceiverInputDStream<String> lines = streamingContext.socketTextStream("localhost", 9999);



        // 处理数据:简单的 WordCount

        JavaDStream<String> words = lines.flatMap(line -> Arrays.asList(line.split(" ")).iterator());

        JavaPairDStream<String, Integer> wordCounts = words.mapToPair(word -> new Tuple2<>(word, 1))

                .reduceByKey((a, b) -> a + b);



        // 输出结果

        wordCounts.print();



        // 启动流处理

        streamingContext.start();

        streamingContext.awaitTermination();

    }

}


http://www.kler.cn/a/315890.html

相关文章:

  • Bytebase 3.0.1 - 可配置在 SQL 编辑器执行 DDL/DML
  • docker-compose安装canal并利用rabbitmq同步多个mysql数据
  • Transformer入门教程全解析(一)
  • MySQL 如何赶上 PostgreSQL 的势头?
  • MySQL 视图 存储过程与存储函数
  • 《Spring Framework实战》9:4.1.4.依赖注入
  • 一个能同时to B和to C、批发零售一体化的需求分析和系统设计
  • 达梦数据库对象管理(三):索引
  • 使用vue创建项目
  • 蓝桥杯模块一:LED指示灯的基本控制
  • JavaEE: 深入探索TCP网络编程的奇妙世界(四)
  • 视频工具EasyDarwin将本地视频生成RTSP给WVP拉流列表
  • 基于51单片机的手环设计仿真
  • LeetCode 热题 100 回顾8
  • 【STM32】TIM定时器定时中断与定时器外部时钟的使用
  • ICM20948 DMP代码详解(38)
  • go libreoffice word 转pdf
  • 耦合微带线单元的网络参量和等效电路公式推导
  • C++在线开发服务器环境搭建
  • 记一次docker打包部署历程
  • openeuler 22.03 lts sp4 使用 kubeadm 部署 k8s-v1.28.2 高可用集群
  • Linux下实现ls命令的功能
  • 【C++】—— stack queue deque
  • 数据库三范式和ER图详解
  • 一种新的电子邮件攻击方式:AiTM
  • 【有啥问啥】探索累计推理(Cumulative Reasoning, CR)——大型语言模型中的复杂推理新框架