当前位置: 首页 > article >正文

pytorch学习笔记二:用pytorch神经网络模型做气温预测、分类任务构建和分类网络构建、卷积神经网络原理介绍

文章目录

    • 一、搭建pytorch神经网络进行气温预测
      • 1)基础搭建
      • 2)实际操作标识特征和标签
      • 3)构建成标准化的预处理数据(做标准化收敛速度更快)
    • 二、按照建模顺序构建完成网络架构
      • 1)np.array格式的标签(y)和特征(x)转为tensor格式数据
      • 2)显示特征14个转为128个隐式特征weight和偏执biases128个去微调,并设置学习率
      • 3)for循环batchsize(1000)次处理数据
    • 三、简化代码来训练网络模型
      • 1)参数解释
      • 2)实际训练简化代码
      • 3)预测训练结果并画图
    • 四、分类任务概述
      • 1)下载并解压Mnist数据集
      • 2)分类任务的原理
      • 3)nn.functional模块和nn.Module模块使用介绍
    • 五、构建分类网络
      • 1)把x和y都转成tensor格式
      • 2)定义函数并使用
      • 3)创建一个model来简化模型
    • 六、DataSet模块介绍与应用方法
    • 七、卷积神经网络应用领域和卷积作用
      • 1)卷积神经网络能做的事
      • 2)卷积神经网络NN和传统神经网络CNN区别
      • 3)整体架构
      • 4)卷积做了一件什么事?
    • 八、卷积的作用(略)
    • 九、卷积特征值计算方法
      • 1)图像颜色通道(RGB)
      • 2)实际提取特征流程
      • 3)利用不同卷积核得到不同特征图(28x28x6,6张图)
    • 十、得到特征图表示
    • 十一、步长与卷积核大小对结果影响
      • 1)只做一次特征图就够了吗?
      • 2)卷积层涉及参数

一、搭建pytorch神经网络进行气温预测

1)基础搭建

  • 加载模块代码

在这里插入图片描述

  • 读取气温数据
    在这里插入图片描述
  • 参数解释
    在这里插入图片描述
  • 查看数据维度
print('数据维度',  features.shape)

**加粗样式**

  • 时间处理字符串
    在这里插入图片描述

  • 准备用数据画曲线图
    在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

  • 对周几这种数据做独热编码(把数据转成做数值的形式)
    在这里插入图片描述

2)实际操作标识特征和标签

  • 备注
    ①标签labels就是y=kx+b中的y,只要标识出来
    ②把标签在x中去掉,也就是在特征中去掉标签(特征就是x)
    ③转换成合适格式,也就是把数据转成np.array的格式
    ④features.shape里面显示了数据有384行,特征有14个

在这里插入图片描述

3)构建成标准化的预处理数据(做标准化收敛速度更快)

在这里插入图片描述

二、按照建模顺序构建完成网络架构

1)np.array格式的标签(y)和特征(x)转为tensor格式数据

在这里插入图片描述

2)显示特征14个转为128个隐式特征weight和偏执biases128个去微调,并设置学习率

  • 注意
    这是回归任务,所以最终要得到一个实际的值,所以weight2是【128,1】,则偏置参数biases2也只是只有1个

在这里插入图片描述

3)for循环batchsize(1000)次处理数据

①先计算隐层结果

hidden = x.mm(weights) + biases

②按照惯例在结果之前加入激活函数relu

hidden = torch.relu(hidden)

③收敛把w2乘过来计算

predictins = hiddenmm(weights2) + biases2

④计算损失
(预测值减去真实值,再做平均方误差)

loss = torch.mean((predictions - y) ** 2)
#放到数组,数据转为numpy格式
losses.append(loss.data.numpy())

在这里插入图片描述

⑤反向传播并更新参数(根据损失去更新最新的w1、B1,w2、B2)

loss.backward()

# 更新参数
weights.data.add_(- learning_rate * weights.grad.data)
biases.data.add_(- learning_rate * biases.grad.data)
weights2.data.add_(- learning_rate * weights2.grad.data)
biases2.data.add_(- learning_rate * biases2.grad.data)

在这里插入图片描述

⑥每次迭代记得清空计算出来的数值(记得计算梯度时都需要清空参数)

weights.grad.data.zero_()
biases.grad.data.zero_()
weights2.grad.data.zero_()
biases2.grad.data.zero_()

三、简化代码来训练网络模型

1)参数解释

input_size:总共样本数量
hidden_size:隐藏特征个数
output_size:输出结果个数
batch_size:16(一次训练的数据数量,之前是全部读进去)

2)实际训练简化代码

①构建网络模型(这里用的Adam动态调整学习率)
在这里插入图片描述
②训练网络
在这里插入图片描述

3)预测训练结果并画图

  • 备注
    ①其实就是转为numpy格式画图
    ②x轴为时间
    ③这里reshape(-1)表示一列的意思
    ④真实值用蓝色表示,预测值用红色表示
    在这里插入图片描述
    在这里插入图片描述
  • 结果展示
    在这里插入图片描述

四、分类任务概述

  • 与之前的回归模型的区别
    ①得到的结果是不同的
    ②使用的损失函数也是不同的

  • 学习目的:Mnist分类任务
    ①网络基本构建与训练方法,常用函数解析
    ②torch.nn.functional模块
    ③nn.Module模块

1)下载并解压Mnist数据集

  • 下载
    在这里插入图片描述

  • 解压
    在这里插入图片描述

  • 看数据集大概什么样子
    可以看到787是每个样本的像素点个数,可以看成是787个特征(下面是打印5这个数字)
    在这里插入图片描述

2)分类任务的原理

  • 原理
    说白了就是判断这个数字属于1到10哪个类别的概率,这里可以看到9属于9的概率是最高的87%
    在这里插入图片描述

  • 流程
    在这里插入图片描述

3)nn.functional模块和nn.Module模块使用介绍

①有可学习的参数用Module:卷积层、
②其他情况用functional:激活函数、损失函数(分类任务一般用交叉相乘作为损失函数:cross_entropy)

五、构建分类网络

1)把x和y都转成tensor格式

在这里插入图片描述

2)定义函数并使用

  • 定义函数
    在这里插入图片描述
  • 定义参数
    bs:也就是batch_size
  • 实际训练流程,并打印结果
    这里model(xb)得出预测值,yb是真实值
    在这里插入图片描述

3)创建一个model来简化模型

  • 备注
    ①必须继承nn.Module并在构造函数调用nn.Module的构造函数
    ②无需写反向传播函数,nn.Module能够利用autograd自动实现反向传播
    ③nn.Module中的可学习参数可以通过named_parameters()或parameters()返回迭代器
    ④这里的forward方法,自己会反向传播
    在这里插入图片描述

六、DataSet模块介绍与应用方法

  • 模块介绍来把数据转为数据集
    ①tensorDataSet
    ②DataLoader
    在这里插入图片描述

  • 获取数据接口
    在这里插入图片描述

  • loss_batch不仅要计算损失值还要清零梯度和反向传播(这些就是batch Normalization 和 Drop out)在这里插入图片描述

  • 获得模型的方法
    在这里插入图片描述

  • 开始测试黄金二获得结果
    在这里插入图片描述

七、卷积神经网络应用领域和卷积作用

在这里插入图片描述

1)卷积神经网络能做的事

在这里插入图片描述

2)卷积神经网络NN和传统神经网络CNN区别

在这里插入图片描述

3)整体架构

①输入层:输入的图片数据
在这里插入图片描述

②卷积层:卷积就是提取特征
在这里插入图片描述

③池化层:池化就是压缩特征
在这里插入图片描述

④全连接层(最终得出10个结果的概率排序,全连接就是两次w和b)
在这里插入图片描述

4)卷积做了一件什么事?

①把HxWxC分割成不同的区域
②对区域提取不同的特征
在这里插入图片描述

八、卷积的作用(略)

九、卷积特征值计算方法

1)图像颜色通道(RGB)

RGB三个通道分开去计算
在这里插入图片描述

2)实际提取特征流程

①这里H和W都是7,RGB代表3,所以图片的是7x7x3
在这里插入图片描述

②filter W0(3x3x3),这里3x3就是一个卷积核,前面的3x3表示多大区域选一个特征值,最后一个3和前面的输入量的最后一个3必须是一样的(这里红色的是特征图
在这里插入图片描述
③计算方法:
内积:相对应位置相乘并相加,如下图是R通道得出0,最终RGB加起来就是2
在这里插入图片描述
在这里插入图片描述

④还有偏置项bias:
在这里插入图片描述

W:(0+2+0)
Bias:b0为1
也就是说0+2+0+b0 = 2+1=3
在这里插入图片描述

3)利用不同卷积核得到不同特征图(28x28x6,6张图)

在这里插入图片描述

十、得到特征图表示

十一、步长与卷积核大小对结果影响

1)只做一次特征图就够了吗?

不断做卷积,得到堆叠的卷积层
在这里插入图片描述

2)卷积层涉及参数

①滑动窗口步长(
(1)步长大,得到图越小;
(2)小步长的特征比较丰富
(3)文本任务的步长不固定)
在这里插入图片描述

②卷积核尺寸(3x3和4x4,一般都是3x3)
在这里插入图片描述

③边缘填充

④卷积核个数


http://www.kler.cn/a/320537.html

相关文章:

  • LeetCode 2816.翻倍以链表形式表示的数字
  • Spring 与 Spring MVC 与 Spring Boot三者之间的区别与联系
  • 【深度学习】使用硬件加速模型训练速度
  • 基于YOLOv8深度学习的公共卫生防护口罩佩戴检测系统(PyQt5界面+数据集+训练代码)
  • 【数据库】mysql数据库迁移前应如何备份数据?
  • django解决跨域问题
  • VM+Ubuntu16.04硬盘扩容
  • Python类里引用其他类
  • c++ day06
  • 【深度学习】(7)--神经网络之保存最优模型
  • 自动驾驶,被逼着上市?
  • 【Python机器学习】NLP信息提取——提取人物/事物关系
  • WPS文字 分栏注意项
  • Java项目实战II基于Java+Spring Boot+MySQL的汽车销售网站(文档+源码+数据库)
  • PyTorch开源的深度学习框架
  • 2、electron vue3 怎么创建子窗口,并给子窗口路由传参
  • 【Linux系统编程】第二十二弹---操作系统核心概念:进程创建与终止机制详解
  • LInux操作系统安装Jenkins
  • MFC-基础架构
  • 实验二十:ds1302时钟实验
  • 【MYSQL】聚合查询、分组查询、联合查询
  • CSS开发全攻略
  • 后端开发面试题7(附答案)
  • 概率论与数理统计复习笔记
  • 本地电脑基于nginx的https单向认证和双向认证(自制证书+nginx配置)保姆级
  • 一天认识一个硬件之鼠标