当前位置: 首页 > article >正文

C--结构体和位段的使用方法

各位看官如果您觉得这篇文章对您有帮助的话
欢迎您分享给更多人哦

请添加图片描述

感谢大家的点赞收藏评论,感谢您的支持!!!

一:结构体

首先结构体我们有一个非常重要的规则 非常重要:

我们允许在初始化时自动将字符串字面量复制到字符数组中,但这不是通过赋值操作完成的,而是在初始化时直接进行的。然而,这要求整个初始化表达式是在结构体初始化列表中,而不是在结构体定义之后作为赋值操作。

就是说在结构体初始化之后s1.age=20可以,但是s1.name="abcdef"不行

#include <stdio.h>  
#include <string.h>  
  
struct stu  
{  
    char name[20];  
    int age;  
    char sex;  
};  
  
int main()  
{  
    struct stu s1 = { .name = "lisi", .age = 18, .sex = 'F' };  
  
    // 修改字符数组类型的成员  
    strcpy(s1.name, "abcdef");  
    但是s.name="abcdef"不合法
  
    // 打印修改后的结构体成员以验证  
    printf("Name: %s, Age: %d, Sex: %c\n", s1.name, s1.age, s1.sex);  
  
    return 0;  
}

在C语言中,结构体初始化之后,对于非数组(或更具体地说,非字符数组)类型的成员,如 int 或 char,您可以直接使用赋值操作符(=)来修改它们的值。这是为什么呢?

因此,s1.age = 20; 是完全合法的。 然而,对于字符数组(如 char name[20];),情况就不同了。您不能直接使用赋值操作符将一个新的字符串字面量(如 “abcdef”)赋给字符数组,因为字符串字面量在内存中是一个常量,而数组名在大多数情况下表示数组首元素的地址(尽管它本身不是一个左值,但在初始化时是一个例外)。
如果您想在结构体初始化之后修改字符数组类型的成员,您需要使用字符串处理函数,如 strcpy

在大多数情况下(特别是在赋值操作中),你不能将数组名当作左值来使用,相当于直接arr=“abcdef”(错误)因为它不代表一个可以存储新值的变量。这就是为什么你不能写s1.name = “abcdef”;这样的代码来修改字符数组的原因。相反,你需要使用strcpy这样的函数来复制字符串到数组中。

总结:
对于非数组类型的结构体成员,可以直接使用赋值操作符(=)来修改它们的值。
对于字符数组类型的结构体成员,需要使用字符串处理函数(如 strcpy)来修改它们的值。

1: 结构体的特殊声明

![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/40d507c992ca4bb086f69a6b5fbdb3c0.jpeg

编译器会把上⾯的两个声明当成完全不同的两个类型,所以非法的。
匿名的结构体类型,如果没有对结构体类型重命名的话,基本上只能使⽤⼀次

2:结构体的自引用

在结构中包含⼀个类型为该结构本⾝的成员是否可以呢?(结构体的自引用)
⽐如,定义⼀个链表的节点

struct Node
{
 int data;
 struct Node next;
};

上述代码正确吗?如果正确,那 sizeof(struct Node) 是多少?
仔细分析,其实是不行的,因为⼀个结构体中再包含⼀个同类型的结构体变量,这样结构体变量的大小就会⽆穷的大,是不合理的。(一直引用无穷无尽)

正确方法:这里我放一个指针:我就可以不去解引用,这样就不会一直访问了,或者置为NULL

struct Node
{
 int data;
 struct Node* next;
};

在结构体自引用使用的过程中,夹杂了 typedef 对匿名结构体类型重命名,也容易引⼊问题,看看
下⾯的代码,可行吗?

typedef struct
{
 int data;
 Node* next;   **还没重新命名你就用上了?**
}Node;  

所以说那样不行:这样就正确了,要有名字,然后用重命名之前的类型名字

typedef struct Node
{
 int data;
 struct Node* next;
}Node;

3:结构体的对齐规则

3.1:首先掌握对齐规则

  1. 结构体的第⼀个成员对齐到和结构体变量起始位置偏移量为0的地址处
  2. 其他成员变量要对齐到某个数字(对齐数)的整数倍的地址处。
    对齐数 = 编译器默认的⼀个对齐数 与 该成员变量大小的较小值。
  • VS 中默认的值为 8
  • Linux中 gcc 没有默认对齐数,对齐数就是成员自身的大小
  1. 结构体总大小为最大对齐数(结构体中每个成员变量都有⼀个对齐数,所有对齐数中最⼤的)的
    整数倍。
  2. 如果嵌套了结构体的情况,嵌套的结构体成员对齐到自己的成员中最⼤对齐数的整数倍处,结构
    体的整体大小就是所有最大对齐数(含嵌套结构体中成员的对齐数)的整数倍。
#include <stdio.h>
int main()
{
	// 练习1
	struct S1
	{
		char c1;
		int i;
		char c2;
	};
	printf("%d\n", sizeof(struct S1)); 12
	//练习2
	struct S2
	{
		char c1;
		char c2;
		int i;
	};
	printf("%d\n", sizeof(struct S2));8
	//练习3
	struct S3
	{
		double d;
		char c;
		int i;
	};
	printf("%d\n", sizeof(struct S3));16
	//练习4-结构体嵌套问题
	struct S4
	{
		char c1;
		struct S3 s3;
		double d;
	};
	printf("%d\n", sizeof(struct S4));32
	return 0;
}

3.2 为什么存在内存对齐?

  1. 平台原因 (移植原因):
    不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定
    类型的数据,否则抛出硬件异常。
  2. 性能原因:
    数据结构(尤其是栈)应该尽可能地在自然边界上对齐。原因在于,为了访问未对⻬的内存,处理器需要
    作两次内存访问;而对齐的内存访问仅需要⼀次访问。假设⼀个处理器总是从内存中取8个字节,则地
    址必须是8的倍数。如果我们能保证将所有的double类型的数据的地址都对⻬成8的倍数,那么就可以
    ⽤⼀个内存操作来读或者写值了。否则,我们可能需要执⾏两次内存访问,因为对象可能被分放在两
    个8字节内存块中。

    总体来说:结构体的内存对⻬是拿空间来换取时间的做法。

那在设计结构体的时候,我们既要满足对齐,又要节省空间,如何做到:
让占用空间小的成员尽量集中在⼀起

1 //例如:
2 struct S1
3 {
4 char c1;
5 int i;
6 char c2;
7 };
8
9 struct S2
10 {
11 char c1;
12 char c2;
13 int i;
14 };
S1 和 S2 类型的成员⼀模⼀样,但是 S1 和 S2 所占空间的⼤⼩有了⼀些区别。

3.3:修改默认对齐数

默认对齐数的大小:一般为2^n(1,2,4,8,……)

#include <stdio.h>
#pragma pack(1)//设置默认对⻬数为1,一般为2^n(1,2,4,8……)
struct S
{
 char c1;
 int i;
 char c2;
};
#pragma pack()//取消设置的对⻬数,还原为默认
int main()
{
 //输出的结果是什么?
 printf("%d\n", sizeof(struct S));默认对齐数为1时候的值(6return 0;
}

4:结构体传参(尽量传地址)

struct S
{
 int data[1000];
 int num;
};
struct S s = {{1,2,3,4}, 1000};
//结构体传参
void print1(struct S s) 传值:再传date[1000],形参太大,时间太长,再压栈一大堆
{
 printf("%d\n", s.num);
}
//结构体地址传参
void print2(struct S* ps)
{
 printf("%d\n", ps->num);
}
int main()
{
print1(s); 传结构体
print2(&s);传指针

上⾯的 print1 和 print2 函数哪个好些?
答案是:首选print2函数。

原因:
函数传参的时候,参数是需要压栈(push进去,出来再销毁,费劲),会有时间和空间上的系统开销。 如果传递⼀个结构体对象的时候,结构体过大,参数压栈的的系统开销比较大,所以会导致性能的下降。 结论:
结构体传参的时候,要传结构体的地址。

5:位段

  1. 位段的成员必须是 int、unsigned int 或signed int 或者是char类型,在C99中位段成员的类型也可以
    选择其他类型。
  2. 位段的成员名后边有⼀个冒号和⼀个数字。
#include <stdio.h>
struct A
{
	int _a : 2;
	int _b : 5;
	int _c : 10;
	int _d : 30;
};
int main()
{
	printf("%d\n", sizeof(struct A));8
	return 0;
}

5.1 位段的内存分配

  1. 位段的成员可以是 int unsigned int signed int 或者是 char 等类型
  2. 位段的空间上是按照需要以4个字节( int )或者1个字节( char )的⽅式来开辟的。
  3. 位段涉及很多不确定因素,位段是不跨平台的,注重可移植的程序应该避免使⽤位段。
    4
    在这里插入图片描述

位段的问题:
6. int 位段被当成有符号数还是⽆符号数是不确定的。7. 位段中最⼤位的数⽬不能确定。(16位机器最⼤16,32位机器最⼤32,写成27,在16位机器会出问题。
8. 位段中的成员在内存中从左向右分配,还是从右向左分配,标准尚未定义。(我们看来是左向右)
9. 当⼀个结构包含两个位段,第⼆个位段成员比较大,无法容纳于第⼀个位段剩余的位时,是舍弃
剩余的位还是利用,这是不确定的。(我们看来是舍弃)
总结:
跟结构相比较,位段(只能是int,unsigned int,char)可以达到同样的效果,并且可以很好的节省空间,但是有跨平台的问题存在。

5.2:

像这样的传输信息采用位段就可以减少空间的使用,避免网络拥挤(打包数量小)

在这里插入图片描述

6:位段的注意事项:

位段的几个成员共有同⼀个字节,这样有些成员的起始位置并不是某个字节的起始位置,那么这些位
置处是没有地址的
譬如char a : 3; char b : 4; ( b就没有地址)
内存中每个字节分配⼀个地址,⼀个字节内部的bit位是没有地址的。
所以不能对位段的成员使用&操作符,这样就不能使⽤scanf直接给位段的成员输⼊值,只能是先输⼊
放在⼀个变量中,然后赋值给位段的成员

struct A
{
 int _a : 2;
 int _b : 5;
 int _c : 10;
 int _d : 30;
};
int main()
{
 struct A sa = {0};
 scanf("%d", &sa._b);这是错误的
 正确的⽰范
 int b = 0;
 scanf("%d", &b);
 sa._b = b;先输⼊
放在⼀个变量中,然后赋值给位段的成员
 return 0;
}

上述就是C–结构体和位段的使用方法的内容了
能看到这里相信您一定对小编的文章有了一定的认可)
有什么问题欢迎各位大佬指出!!!

请添加图片描述
欢迎各位大佬评论区留言修正 !!!

请添加图片描述


http://www.kler.cn/news/321279.html

相关文章:

  • 一道涉及 Go 中的并发安全和数据竞态(Race Condition)控制的难题
  • 碎纸片的自动拼接复原技术
  • tcp、udp通信调试工具Socket Tool
  • 协议IP规定,576字节和1500字节的区别
  • MySQL关卡任务书
  • 单样本Cellchat(V2)细胞通讯分析学习和整理
  • 2.2 HuggingFists中的编程语言
  • [NewStarCTF 2023 公开赛道]Begin of PHP1
  • Qt | Linux+QFileSystemWatcher文件夹和文件监视(例如监视U盘挂载目录)
  • 计算机毕业设计之:云中e百货微信小程序设计与实现(源码+文档+定制)
  • 力扣9.25
  • 微信小程序开发第五课
  • LSI SAS 9361-8i和SAS3008 12 gb / s PCIe 3.0 RAID 阵列卡配置
  • Codeforces Round 592 (Div. 2) C题 The Football Season(Exgcd)
  • AI大模型横评-9月Update(O1,Grok2,Qwen,Step-2)
  • 计算机毕业设计 基于Python的医疗预约与诊断系统 Django+Vue 前后端分离 附源码 讲解 文档
  • 编译 FFmpeg 以支持 AV1 编解码器以及其他硬件加速选项(如 NVENC、VAAPI 等)
  • 谷歌深度学习研究揭示OpenAI O1模型优化策略:比规模更重要的计算效率
  • Java中的锁总结
  • Qt信号说明
  • 【Linux】项目自动化构建工具-make/Makefile 详解
  • Linux系统之部署web-resume静态个人简历网页
  • 时序,这很Transformer!颠覆传统,实现了性能的全面超越!
  • Vue3+Element-UI Plus登录静态页
  • vite ts vue中配置@路径别名报错标红
  • 机械设备产品资料方案介绍小程序系统开发制作
  • 【数据结构】排序算法---桶排序
  • SVM原理
  • docker-compose.yml entrypoint 和command 关系
  • 利用 Flink CDC 实现实时数据同步与分析