当前位置: 首页 > article >正文

代码随想录算法训练营第五十三天 | 1143.最长公共子序列 1035.不相交的线 53. 最大子序和 动态规划

1143. 最长公共子序列

给定两个字符串 text1text2,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0

一个字符串的 子序列 **是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。

  • 例如,"ace""abcde" 的子序列,但 "aec" 不是 "abcde" 的子序列。

两个字符串的 公共子序列 是这两个字符串所共同拥有的子序列。

输入:text1 = "abcde", text2 = "ace" 
输出:3  
解释:最长公共子序列是 "ace" ,它的长度为 3

这道题和718. 最长重复子数组的区别在于,所求的解不要求是连续的。

动规五部曲:

  1. 确定dp数组及其下标含义

dp[i][j]表示长度在[0,i-1]的字符串1与长度在[0,j-1]的字符串2的最长公共子序列为dp[i][j]

  1. 确定递推公式

分为两种情况

text1[i-1]==text[j-1] 如果相同找到一个公共元素,所以dp[i][j]=dp[i-1][j-1]+1

text1[i-1]≠text[j-1] 如果不相同,取最大 dp[i][j]=Math.max(dp[i-1][j],dp[i][j-1]);

  1. dp数组初始化

统一初始化为0

  1. 确定遍历顺序

dp[i][j]由dp[i-1][j-1]决定,所以需要从前向后推导

  1. 举例推导dp数组
class Solution {
    public int longestCommonSubsequence(String text1, String text2) {
        int[][] dp=new int[text1.length()+1][text2.length()+1];
        for(int i=1;i<=text1.length();i++){
            char s1=text1.charAt(i-1);
            for(int j=1;j<=text2.length();j++){
                char s2=text2.charAt(j-1);
                if(s1==s2){
                    dp[i][j]=dp[i-1][j-1]+1;
                }else{
                    dp[i][j]=Math.max(dp[i-1][j],dp[i][j-1]);
                }
            }
        }
        return dp[text1.length()][text2.length()];

    }
}

1035. 不相交的线

在两条独立的水平线上按给定的顺序写下 nums1nums2 中的整数。

现在,可以绘制一些连接两个数字 nums1[i]nums2[j] 的直线,这些直线需要同时满足满足:

  • nums1[i] == nums2[j]
  • 且绘制的直线不与任何其他连线(非水平线)相交。

请注意,连线即使在端点也不能相交:每个数字只能属于一条连线。

以这种方法绘制线条,并返回可以绘制的最大连线数。

输入:nums1 = [1,4,2], nums2 = [1,2,4]
输出:2
解释:可以画出两条不交叉的线,如上图所示。 
但无法画出第三条不相交的直线,因为从 nums1[1]=4 到 nums2[2]=4 的直线将与从 nums1[2]=2 到 nums2[1]=2 的直线相交。

这道题的意思其实就是求两个字符串的最长公共子序列,和上一道题一样。

class Solution {
    public int maxUncrossedLines(int[] nums1, int[] nums2) {
        int[][] dp=new int[nums1.length+1][nums2.length+1];
        for(int i=1;i<=nums1.length;i++){
            for(int j=1;j<=nums2.length;j++){
                if(nums1[i-1]==nums2[j-1]){
                    dp[i][j]=dp[i-1][j-1]+1;
                }else{
                    dp[i][j]=Math.max(dp[i-1][j],dp[i][j-1]);
                }
            }
        }
        return dp[nums1.length][nums2.length];

    }
}

53. 最大子数组和

给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

子数组 是数组中的一个连续部分。

输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6

动规五部曲:

  1. 确定dp及其下标含义

dp[i]表示下标为i的最大连续子序列和为dp[i]

  1. 确定递推公式

①根据前一个推导dp[i-1]+nums[i]

②从头开始计算nums[i]

dp[i]=Math.max(dp[i-1]+nums[i],nums[i]);

  1. dp数组初始化

dp[0]=nums[0]

  1. 遍历顺序

从前向后遍历

  1. 举例推导dp数组

nums = [-2,1,-3,4,-1,2,1,-5,4]

dp[i]=[-2 1 -2 4 3 5 6 1]

其中最大的dp[6]=6

class Solution {
    public int maxSubArray(int[] nums) {
        int[] dp=new int[nums.length];
        dp[0]=nums[0];
        int reslut=dp[0];
        for(int i=1;i<nums.length;i++){
            dp[i]=Math.max(dp[i-1]+nums[i],nums[i]);
            reslut=Math.max(dp[i],reslut);
        }
        return reslut;
    }
}

http://www.kler.cn/a/3372.html

相关文章:

  • 微信小程序压缩图片
  • Class1(2020):Shell基础(一)——Shell概念
  • 简识JVM私有内存区域栈、数据结构
  • 新年好(Dijkstra+dfs/全排列)
  • 深度学习中Batch Normalization(BN)原理、作用浅析
  • 55.【5】BUUCTF WEB NCTF2019 sqli
  • python变量内存管理
  • 古茗科技面试:为什么 ElasticSearch 更适合复杂条件搜索?
  • mysql数据库介绍
  • 基类与派生类对象的关系 派生类的构造函数
  • 【回忆杀】2012年拥有第一台电脑【致逝去的青春】
  • 【MySQL】数据库的约束
  • 中科亿海微FPGA应用(一、点灯)
  • Python | 蓝桥杯进阶第五卷——数论
  • 计算机组成原理|第四章(笔记)
  • 【C语言】动态内存分配malloc,realloc等函数使用和常见错误
  • 【C++】stack|queue|deque(适配器模式)
  • 一个看起来非常科幻的人脸识别接口与其实现逻辑,用于二次开发
  • 【算法】回溯法详解
  • 2023年区块链面试宝典整理版(一)
  • 【算法】生成分布式 ID 的雪花算法
  • WinForm | C# 界面弹出消息通知栏 (仿Win10系统通知栏)
  • 什么是Python3网络爬虫?
  • Nginx是什么,是干嘛的
  • 内存泄漏 定位方法
  • 老杜MySQL入门基础 第二天