【小白学机器学习31】 大数定律,中心极限定理,标准正态分布与概率的使用
目录
1 正态分布相关的2个相关定理
1.1 大数定律:(证明了)分布的稳定性
1.2 中心极限定理:(证明了)分布的收敛性
2 使用标准差和概率的2种思路
2.1 标准正态分布的曲线
2.2 两种使用方式
2.3 第1种:按整数倍标准差δ 作为标准使用
2.3.1 比如3δ原则 /6西格玛管理
2.3.2 还有LCL, UCL管理
2.2 第2种:按比较整的概率如95%对应的标准差使用
3 应用举例1
4 应用举例2:造成误差的原因不是样本数占总体的比例,而是样本的绝对数量!
关于正态分布,具体应用
1 正态分布相关的2个相关定理
1.1 大数定律:(证明了)分布的稳定性
- 大量试验结果稳定性
- 频率的稳定性,
- 伯努利大数定律:样本数多n变大,某个事件发生的频度 =单次试验内发生的概率
- 泊松大数定律: 样本数多n变大,样本平均值估计 =总体平均值
1.2 中心极限定理:(证明了)分布的收敛性
- 分布的收敛性
- 随机变量(如多次取样的均值)会逐渐符合某一分布:正态分布
- 二项分布的极限分布是正态分布
- 无论一组变量独立同分布,不管本身符合什么分布,但是有u和 δ^2。这组变量的样本平均数(多次抽样的平均数分分布)就服从 u和 δ^2/N的正态分布
2 使用标准差和概率的2种思路
2.1 标准正态分布的曲线
- 标准正态分布曲线,曲线下的面积可以表示概率
- 曲线上的每个点,都是Xi值的标准值
- 标准值=xi-u/sd
2.2 两种使用方式
- 我们根据不同的需要,确定了我们使用 2δ 还是2.58δ
- 如果有可能,我们使用其他标准的δ 都有可能,关键是根据需求来
- 当我们需要以整数δ为标准来看概率时,选择 δ,2δ,3δ等
- 当我们需要以比较整的概率时比如95%,99%时,比如做假设检验的适合,选择 1.96δ,2.58δ等
2.3 第1种:按整数倍标准差δ 作为标准使用
按照 -3δ,-2δ,-1δ,1δ,2δ,3δ 这样的整数倍δ来划分区间
- 3δ,49.8%,99.99%
- 2.58δ,49.5%,99%
- 2δ,47.7%,95.45%
- 1.96δ,47.5%,95%
- δ,34.1%,68.5%
- -δ,34.1%,68.5%
- -1.96δ,47.5%,95%
- -2δ,47.7%,95.45%
- -2.58δ,49.5%,99%
- -3δ,49.8%,99.99%
2.3.1 比如3δ原则 /6西格玛管理
- 标准正态分布与概率,3δ原则
- 不同的标准差δ对应不同的概率
- 按照几倍δ,去找对应的概率,68.5%,95.45%,99.99%等
2.3.2 还有LCL, UCL管理
- LCL“Low control limit 一般对应-3δ
- UCL:UP control limit 一般对应+3δ
2.2 第2种:按比较整的概率如95%对应的标准差使用
按概率 90% 95% 99%等比较整的概率去划分标准正态分布的区间
- 3δ,49.8%,99.99%
- 2.58δ,49.5%,99%
- 2δ,47.7%,95.45%
- 1.96δ,47.5%,95%
- δ,34.1%,68.5%
- -δ,34.1%,68.5%
- -1.96δ,47.5%,95%
- -2δ,47.7%,95.45%
- -2.58δ,49.5%,99%
- -3δ,49.8%,99.99%
3 应用举例1
- 使用样本均值 + 总体的标准差,去估计 总体均值的范围
- 使用样本均值 + 总体的标准差(样本标准差),去估计 总体均值的范围
我们如果只有1个样本,少数样本,虽然不能直接推算总体样本,但是可以这么估计范围。
比如在95%区间内
总体均值-1.96*标准差/sqrt(n) <= 样本平均值<=总体均值-1.96*标准差/sqrt(n)
因此
总体平均值<=样本平均值+1.96*标准差/sqrt(n)
总体平均值>=样本平均值-1.96*标准差/sqrt(n)当样本数量n一直增大后
总体平均值<=样本平均值+1.96*标准差/sqrt(n)=样本平均值+0
总体平均值>=样本平均值-1.96*标准差/sqrt(n) =样本平均值-0
总体平均值=样本平均值如果范围从95%→99%后,形象的看为什么置信区间变大了
总体平均值<=样本平均值+2.58 *标准差/sqrt(n)
总体平均值>=样本平均值-2.58 *标准差/sqrt(n)
范围变大,95%-99%,也就是置信区间变大了。而拒绝的空间α就很小了。这个计算实际存在理论上的问题。但是实际上我们容易得到样本均值,但很难得到总体标准差,而如果用样本的标准差去替代总体的,也是个办法,因为样本方差的分母从N改为(N-1)=总体方差,所以还是可以行得通的,但是肯定是有误差的。
4 应用举例2:造成误差的原因不是样本数占总体的比例,而是样本的绝对数量!
- 一个更奇怪的公式
- 95%时
- 样本p-1.96*sqrt((N-n)/(N-1)*p*(1-p)/n) <总体P< 样本p+1.96*sqrt((N-n)/(N-1)*p*(1-p)/n)
- 而(N-n)/(N-1) 样本数量n比较小时,趋近于1,故意忽略
- 样本p-1.96*sqrt(p*(1-p)/n) <总体P< 样本p+1.96*sqrt(p*(1-p)/n)
- 造成误差的原因
- 不是样本数占总体的比例,而是样本的绝对数量!
- 反常识!