Resnet50进行迁移学习实现图片二分类
内容简介
本文使用预训练的Resnet50网络对皮肤病图片进行二分类,基于portch框架。
数据集说明
数据集存放目录为: used_dataset , 共200张图片,标签为:benign(良性)、malignant(患病)。
数据集划分如下:
代码目录介绍
- args.py 存放训练和测试所用的各种参数。 --mode字段表示运行模式:train or test. --model_path字段是训练模型的保存路径。 其余字段都有默认值。
- create_dataset.py 该脚本是用来读json中的数据的,可以忽略。
- data_gen.py 该脚本实现划分数据集以及数据增强和数据加载。
- main.py 包含训练、评估和测试。
- transform.py 实现图片增强。
- utils.py 存放一些工具函数。
- models/Res.py 是重写的ResNet各种类型的网络。
- checkpoints 保存模型
运行命令
# 训练模型
python main.py --mode=train
# 测试模型
python main.py --mode=test --model_path='训练好的模型文件路径'
main.py 脚本介绍
main()函数 实现模型的训练和评估
step1: 加载数据
# data
transformations = get_transforms(input_size=args.image_size,test_size=args.image_size)
train_set = data_gen.Dataset(root=args.train_txt_path,transform=transformations['val_train'])
train_loader = data.DataLoader(train_set,batch_size=args.batch_size,shuffle=True)
val_set = data_gen.ValDataset(root=args.val_txt_path,transform=transformations['val_test'])
val_loader = data.DataLoader(val_set,batch_size=args.batch_size,shuffle=False)
step2: 构建模型
model = make_model(args)
if use_cuda:
model.cuda()
# define loss function and optimizer
if use_cuda:
criterion = nn.CrossEntropyLoss().cuda()
else:
criterion = nn.CrossEntropyLoss()
optimizer = get_optimizer(model,args)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.2, patience=5, verbose=False)
step3: 模型的训练和评估
# train
for epoch in range(start_epoch,args.epochs):
print('\nEpoch: [%d | %d] LR: %f' % (epoch + 1, args.epochs, optimizer.param_groups[0]['lr']))
train_loss,train_acc = train(train_loader,model,criterion,optimizer,epoch,use_cuda)
test_loss,val_acc = val(val_loader,model,criterion,epoch,use_cuda)
scheduler.step(test_loss)
print(f'train_loss:{train_loss}\t val_loss:{test_loss}\t train_acc:{train_acc} \t val_acc:{val_acc}')
# save_model
is_best = val_acc >= best_acc
best_acc = max(val_acc, best_acc)
save_checkpoint({
'fold': 0,
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'train_acc':train_acc,
'acc': val_acc,
'best_acc': best_acc,
'optimizer' : optimizer.state_dict(),
}, is_best, single=True, checkpoint=args.checkpoint)
print("best acc = ",best_acc)
train()函数 每个epoch下的模型训练过程
主要实现每个批次下梯度的反向传播,计算accuarcy 和 loss, 并更新,最后返回其均值。
def train(train_loader,model,criterion,optimizer,epoch,use_cuda):
model.train()
losses = AverageMeter()
train_acc = AverageMeter()
for (inputs,targets) in tqdm(train_loader):
if use_cuda:
inputs,targets = inputs.cuda(),targets.cuda(async=True)
inputs,targets = torch.autograd.Variable(inputs), torch.autograd.Variable(targets)
# 梯度参数设为0
optimizer.zero_grad()
# forward
outputs = model(inputs)
loss = criterion(outputs, targets)
# compute gradient and do SGD step
loss.backward()
optimizer.step()
# measure accuracy and record loss
acc = accuracy(outputs.data,targets.data)
# inputs.size(0)=32
losses.update(loss.item(), inputs.size(0))
train_acc.update(acc.item(),inputs.size(0))
return losses.avg,train_acc.avg
val()函数 每个epoch下的模型评估过程
主要代码与train()函数一致,但没有梯度的计算,还有将model.train()改成model.eval()。
def val(val_loader,model,criterion,epoch,use_cuda):
global best_acc
losses = AverageMeter()
val_acc = AverageMeter()
model.eval() # 将模型设置为验证模式
# 混淆矩阵
confusion_matrix = meter.ConfusionMeter(args.num_classes)
for _,(inputs,targets) in enumerate(val_loader):
if use_cuda:
inputs,targets = inputs.cuda(),targets.cuda()
inputs,targets = torch.autograd.Variable(inputs), torch.autograd.Variable(targets)
# compute output
outputs = model(inputs)
loss = criterion(outputs, targets)
confusion_matrix.add(outputs.data.squeeze(),targets.long())
acc1 = accuracy(outputs.data,targets.data)
# measure accuracy and record loss
losses.update(loss.item(), inputs.size(0))
val_acc.update(acc1.item(),inputs.size(0))
return losses.avg,val_acc.avg
test()函数 模型的测试
def test(use_cuda):
# data
transformations = get_transforms(input_size=args.image_size,test_size=args.image_size)
test_set = data_gen.TestDataset(root=args.test_txt_path,transform= transformations['test'])
test_loader = data.DataLoader(test_set,batch_size=args.batch_size,shuffle=False)
# load model
model = make_model(args)
if args.model_path:
# 加载模型
model.load_state_dict(torch.load(args.model_path))
if use_cuda:
model.cuda()
# evaluate
y_pred = []
y_true = []
img_paths = []
with torch.no_grad():
model.eval() # 设置成eval模式
for (inputs,targets,paths) in tqdm(test_loader):
y_true.extend(targets.detach().tolist())
img_paths.extend(list(paths))
if use_cuda:
inputs,targets = inputs.cuda(),targets.cuda()
inputs,targets = torch.autograd.Variable(inputs), torch.autograd.Variable(targets)
# compute output
outputs = model(inputs) # (16,2)
# dim=1 表示按行计算 即对每一行进行softmax
# probability = torch.nn.functional.softmax(outputs,dim=1)[:,1].tolist()
# probability = [1 if prob >= 0.5 else 0 for prob in probability]
# 返回最大值的索引
probability = torch.max(outputs, dim=1)[1].data.cpu().numpy().squeeze()
y_pred.extend(probability)
print("y_pred=",y_pred)
accuracy = metrics.accuracy_score(y_true,y_pred)
print("accuracy=",accuracy)
confusion_matrix = metrics.confusion_matrix(y_true,y_pred)
print("confusion_matrix=",confusion_matrix)
print(metrics.classification_report(y_true,y_pred))
# fpr,tpr,thresholds = metrics.roc_curve(y_true,y_pred)
print("roc-auc score=",metrics.roc_auc_score(y_true,y_pred))
res_dict = {
'img_path':img_paths,
'label':y_true,
'predict':y_pred,
}
df = pd.DataFrame(res_dict)
df.to_csv(args.result_csv,index=False)
print(f"write to {args.result_csv} succeed ")
实验结果