遥感辐射传输方程中的格林函数
Green Function
1.Green function for ODE
Consider a linear ODE:
a
n
(
x
)
d
n
y
d
x
n
+
⋯
+
a
1
(
x
)
d
y
d
x
+
a
0
(
x
)
y
=
f
(
x
)
a_n(x)\frac{d^ny}{dx^n}+\cdots+a_1(x)\frac{dy}{dx}+a_0(x)y = f(x)
an(x)dxndny+⋯+a1(x)dxdy+a0(x)y=f(x)
The LHS is denoted as
L
y
(
x
)
Ly(x)
Ly(x), then we got
L
y
(
x
)
=
f
(
x
)
Ly(x)=f(x)
Ly(x)=f(x)
Suppose the Green function
G
(
x
,
z
)
G(x,z)
G(x,z) is the solution of such ODE obey a boundary conditions in the range
a
≤
x
≤
b
a \le x \le b
a≤x≤b, which the solution would be given by
y
(
x
)
=
∫
a
b
G
(
x
,
z
)
f
(
z
)
d
z
y(x)=\int_a^{b}G(x,z)f(z)dz
y(x)=∫abG(x,z)f(z)dz
So
G
(
x
,
z
)
G(x,z)
G(x,z) could be viewed as the response of a system to a unit impulse at
x
=
z
x =z
x=z. Then we apply the linear operator on it:
L
y
(
x
)
=
∫
a
b
L
G
(
x
,
z
)
f
(
z
)
d
z
=
f
(
x
)
Ly(x)=\int_a^bLG(x,z)f(z)dz=f(x)
Ly(x)=∫abLG(x,z)f(z)dz=f(x)
Compared to the property of the Green function:
∫
f
(
t
)
δ
(
t
−
a
)
d
t
=
f
(
a
)
\int f(t)\delta(t-a)dt = f(a)
∫f(t)δ(t−a)dt=f(a)
Then, it could be find that:
L
G
(
x
,
z
)
=
δ
(
z
−
x
)
LG(x,z)=\delta(z-x)
LG(x,z)=δ(z−x)
This means that the Green function satifies the ODE with RHS become the delta function.
An important fact is that
lim
ϵ
→
0
∑
m
=
0
n
∫
z
−
ϵ
z
+
ϵ
a
m
(
x
)
d
m
G
(
x
,
z
)
d
x
m
d
x
=
lim
ϵ
→
0
∫
z
−
ϵ
z
+
ϵ
δ
(
x
−
z
)
d
x
=
1
\lim_{\epsilon\rightarrow0}\sum_{m=0}^n\int_{z-\epsilon}^{z+\epsilon}a_m(x)\frac{d^mG(x,z)}{dx^m}dx=\lim_{\epsilon\rightarrow0}\int_{z-\epsilon}^{z+\epsilon}\delta(x-z)dx=1
ϵ→0limm=0∑n∫z−ϵz+ϵam(x)dxmdmG(x,z)dx=ϵ→0lim∫z−ϵz+ϵδ(x−z)dx=1
So
d
m
G
(
x
,
z
)
d
x
m
\frac{d^mG(x,z)}{dx^m}
dxmdmG(x,z) must has derivative at
x
=
z
x=z
x=z with infinite value (since RHS is a delta function), which means that
d
m
−
1
G
(
x
,
z
)
d
x
(
m
−
1
)
\frac{d^{m-1}G(x,z)}{dx^(m-1)}
dx(m−1)dm−1G(x,z) must have a finite discontinuity, and then lower order derivative must be continous. Then, they are 0 in the intergral. By intetration by parts, we get that:
lim
ϵ
→
0
∑
m
=
0
n
∫
z
−
ϵ
z
+
ϵ
a
m
(
x
)
d
m
G
(
x
,
z
)
d
x
m
d
x
=
lim
ϵ
→
0
∫
z
−
ϵ
z
+
ϵ
a
n
(
x
)
d
n
G
(
x
,
z
)
d
x
n
d
x
=
lim
ϵ
→
0
[
a
n
(
x
)
d
n
−
1
G
(
x
,
z
)
d
x
n
−
1
]
z
−
ϵ
z
+
ϵ
−
∫
z
−
ϵ
z
+
ϵ
a
n
(
x
)
′
d
n
G
(
x
,
z
)
d
x
n
d
x
=
lim
ϵ
→
0
[
a
n
(
x
)
d
n
−
1
G
(
x
,
z
)
d
x
n
−
1
]
z
−
ϵ
z
+
ϵ
=
1
→
a
n
(
z
)
[
d
n
−
1
G
(
x
,
z
)
d
x
n
−
1
]
∣
x
=
z
=
1
→
[
d
n
−
1
G
(
x
,
z
)
d
x
n
−
1
]
∣
x
=
z
=
1
a
n
(
z
)
\begin{aligned} &\lim_{\epsilon\rightarrow0}\sum_{m=0}^n\int_{z-\epsilon}^{z+\epsilon}a_m(x)\frac{d^mG(x,z)}{dx^m}dx \\&=\lim_{\epsilon\rightarrow0}\int_{z-\epsilon}^{z+\epsilon}a_n(x)\frac{d^nG(x,z)}{dx^n}dx\\ &=\lim_{\epsilon\rightarrow0}[a_n(x)\frac{d^{n-1}G(x,z)}{dx^{n-1}}]_{z-\epsilon}^{z+\epsilon}-\int_{z-\epsilon}^{z+\epsilon}a_n(x)'\frac{d^{n}G(x,z)}{dx^{n}}dx\\ &=\lim_{\epsilon\rightarrow0}[a_n(x)\frac{d^{n-1}G(x,z)}{dx^{n-1}}]_{z-\epsilon}^{z+\epsilon}=1 \\ & \rightarrow a_n(z)[\frac{d^{n-1}G(x,z)}{dx^{n-1}}]|_{x=z}=1\\ & \rightarrow [\frac{d^{n-1}G(x,z)}{dx^{n-1}}]|_{x=z}=\frac{1}{a_n(z)} \end{aligned}
ϵ→0limm=0∑n∫z−ϵz+ϵam(x)dxmdmG(x,z)dx=ϵ→0lim∫z−ϵz+ϵan(x)dxndnG(x,z)dx=ϵ→0lim[an(x)dxn−1dn−1G(x,z)]z−ϵz+ϵ−∫z−ϵz+ϵan(x)′dxndnG(x,z)dx=ϵ→0lim[an(x)dxn−1dn−1G(x,z)]z−ϵz+ϵ=1→an(z)[dxn−1dn−1G(x,z)]∣x=z=1→[dxn−1dn−1G(x,z)]∣x=z=an(z)1
The properties of Green’s function
G
(
x
,
z
)
G(x,z)
G(x,z) is summarised as following:
- G ( x , z ) G(x,z) G(x,z) obey the original ODE with f(x) set to δ ( x − z ) \delta(x-z) δ(x−z)
- Consider G ( x , z ) G(x,z) G(x,z) a function of x alone obeys the homogeneous boundarty conditions on y ( x ) y(x) y(x)
- The diravatives of G ( x , z ) G(x,z) G(x,z) w.r.t x up to order n-2 are continous at x = z x=z x=z, and n-1 order derivative has dicontinous of 1 a n ( z ) \frac{1}{a_n(z)} an(z)1 at this point.
E.g.
d
2
y
d
x
2
+
y
=
c
o
s
e
c
x
s
.
t
.
y
(
0
)
=
y
(
π
/
2
)
=
0
\frac{d^2y}{dx^2}+y=cosecx\ \ s.t.\ y(0)=y(\pi/2)=0
dx2d2y+y=cosecx s.t. y(0)=y(π/2)=0
Solution: Using the formula (6), we get
d
2
G
(
x
,
z
)
d
x
2
+
G
(
x
,
z
)
=
δ
(
z
−
x
)
\frac{d^2G(x,z)}{dx^2}+G(x,z)=\delta(z-x)
dx2d2G(x,z)+G(x,z)=δ(z−x)
Then solve the (10) and using (3) could find th solution.
2.Green function for in homogeneous PDE
A linear PDE is given by
L
u
(
r
)
=
ρ
(
r
)
\mathcal{L}u(r)=\rho(r)
Lu(r)=ρ(r)
Here,
L
\mathcal{L}
L is linear paritial defferential operator. The solution to (1) satisfies some homogeneous boundary conditions on
u
(
r
)
u(r)
u(r) then the Green’s function
G
(
r
,
r
0
)
G(r,r_0)
G(r,r0) for this problem is a solution of
L
G
(
r
,
r
0
)
=
δ
(
r
−
r
0
)
\mathcal{L}G(r,r_0)=\delta(r-r_0)
LG(r,r0)=δ(r−r0)
where
r
0
r_0
r0 lies in V. Then the solution to (1) is that
u
(
r
)
=
∫
G
(
r
,
r
0
)
ρ
(
r
0
)
d
V
(
r
0
)
u(r)=\int G(r,r_0)\rho(r_0)dV(r_0)
u(r)=∫G(r,r0)ρ(r0)dV(r0)
3.Green function for in RTM
The stationary RTM is given by
Ω
⋅
∇
I
(
r
,
Ω
)
+
σ
λ
(
r
,
Ω
)
I
(
r
,
Ω
)
=
∫
4
π
σ
s
(
r
,
Ω
′
,
Ω
)
I
(
r
,
Ω
′
)
d
Ω
′
+
q
(
r
,
Ω
)
\begin{aligned} &\Omega\cdot\nabla I(r,\Omega)+\sigma_{\lambda}(r,\Omega)I(r,\Omega) \\&= \int_{4\pi}\sigma_{s}(r,\Omega',\Omega)I(r,\Omega')d\Omega'+q(r,\Omega) \end{aligned}
Ω⋅∇I(r,Ω)+σλ(r,Ω)I(r,Ω)=∫4πσs(r,Ω′,Ω)I(r,Ω′)dΩ′+q(r,Ω)
with boundary condition
I
(
r
B
,
Ω
)
=
B
(
r
B
,
Ω
)
,
r
B
∈
δ
V
,
n
(
r
B
)
⋅
Ω
<
0
I(r_B,\Omega)=B(r_B,\Omega), \ r_B\in\delta V,\ n(r_B)\cdot\Omega <0
I(rB,Ω)=B(rB,Ω), rB∈δV, n(rB)⋅Ω<0
We could find that the left side and the first term of (4) is linear operator on
I
(
r
,
Ω
)
I(r,\Omega)
I(r,Ω), that means if
I
1
I_1
I1 and
I
2
I_2
I2 is the solutions then
I
1
+
I
2
I_1 + I_2
I1+I2 is also the solution.
Then the Volumn Green function satisfies the equation:
Ω
⋅
∇
G
V
(
r
,
Ω
;
r
′
,
Ω
′
)
+
σ
λ
(
r
,
Ω
)
G
V
(
r
,
Ω
;
r
′
,
Ω
′
)
=
∫
4
π
σ
s
(
r
,
Ω
′
′
,
Ω
)
G
V
(
r
,
Ω
′
′
;
r
′
,
Ω
′
)
d
Ω
′
′
+
δ
(
Ω
−
Ω
′
)
δ
V
(
r
−
r
′
)
\begin{aligned} &\Omega\cdot\nabla G_V(r,\Omega;r',\Omega')+\sigma_{\lambda}(r,\Omega)G_V(r,\Omega;r',\Omega') \\&= \int_{4\pi}\sigma_{s}(r,\Omega'',\Omega)G_V(r,\Omega'';r',\Omega')d\Omega''+\delta(\Omega-\Omega')\delta_V(r-r') \end{aligned}
Ω⋅∇GV(r,Ω;r′,Ω′)+σλ(r,Ω)GV(r,Ω;r′,Ω′)=∫4πσs(r,Ω′′,Ω)GV(r,Ω′′;r′,Ω′)dΩ′′+δ(Ω−Ω′)δV(r−r′)
with boundary condition
G
V
(
r
B
,
Ω
;
r
′
,
Ω
′
=
0
)
r
B
∈
δ
V
,
Ω
⋅
n
(
r
B
)
<
0
G_V(r_B,\Omega;r',\Omega'=0) \ \ r_B\in \delta V, \Omega \cdot n(r_B)<0
GV(rB,Ω;r′,Ω′=0) rB∈δV,Ω⋅n(rB)<0
And the surface Green’s function is the solution to RT with source
q
(
r
,
Ω
)
=
0
q(r,\Omega)=0
q(r,Ω)=0 with boundary condition
G
s
(
r
,
Ω
;
r
B
′
,
Ω
)
=
δ
(
Ω
−
Ω
′
)
δ
S
(
r
B
,
r
B
′
)
r
B
′
∈
δ
V
,
n
(
r
B
′
)
⋅
Ω
′
<
0
G_s(r,\Omega;r_B',\Omega)=\delta(\Omega-\Omega')\delta_S(r_B,r'_B)\ \ r_B'\in\delta V, n(r'_B)\cdot\Omega'<0
Gs(r,Ω;rB′,Ω)=δ(Ω−Ω′)δS(rB,rB′) rB′∈δV,n(rB′)⋅Ω′<0
Using these two Green’s function, we could rewrite the solution to the RTE with arbitrary source
q
(
r
,
Ω
)
q(r,\Omega)
q(r,Ω) and boundart counditions with sources
q
B
q_B
qB on the non-reflecting boundary
δ
V
\delta V
δV as
I
(
r
,
Ω
)
=
∫
V
d
r
′
∫
4
π
G
V
(
r
,
Ω
;
r
′
,
Ω
′
)
q
(
r
′
,
Ω
′
)
d
Ω
′
+
∫
δ
V
d
S
∫
n
(
r
B
′
)
⋅
Ω
′
<
0
d
Ω
′
G
S
(
r
,
Ω
;
r
B
′
,
Ω
′
)
q
B
(
r
B
′
,
Ω
′
)
.
\begin{aligned} I(r,\Omega)&=\int_Vdr'\int_{4\pi}G_V(r,\Omega;r',\Omega')q(r',\Omega')d\Omega'\\& + \int_{\delta V}dS\int_{n(r'_B)\cdot \Omega' <0}d\Omega'G_S(r,\Omega;r'_B,\Omega')q_B(r'_B,\Omega'). \end{aligned}
I(r,Ω)=∫Vdr′∫4πGV(r,Ω;r′,Ω′)q(r′,Ω′)dΩ′+∫δVdS∫n(rB′)⋅Ω′<0dΩ′GS(r,Ω;rB′,Ω′)qB(rB′,Ω′).