当前位置: 首页 > article >正文

助力风力发电风机设备智能化巡检,基于YOLOv3全系列【tiny/l/spp】参数模型开发构建无人机巡检场景下风机叶片缺陷问题智能化检测预警模型

在全球能源转型的大潮中,清洁环境能源的发展已成为各国关注的焦点。风力发电作为其中的佼佼者,以其可再生、无污染的特点,受到了广泛的青睐。然而,风力发电设施大多建于人迹罕至的地区,设备庞大且复杂,其维护与管理成为了一个亟待解决的问题。传统的巡检方式不仅效率低下,且存在诸多安全隐患,无法满足现代风电场管理的需求。在此背景下,无人机+AI智能化检测模型应运而生,为风力发电设施的巡检工作带来了革命性的改变。传统的风力发电设施巡检依赖于人工进行,工程人员需要定期攀爬到高大的风车塔架上,对叶片、轮轴等关键部件进行仔细检查。这种作业方式不仅耗时费力,而且受天气、地形等条件限制,往往无法按计划进行。同时,人工巡检还存在一定的安全隐患,特别是在恶劣的天气条件下,巡检人员的生命安全无法得到充分保障。此外,高昂的人工成本也是传统巡检方式的一大痛点。无人机技术的快速发展为风力发电设施的巡检提供了新的解决方案。无人机具有灵活、便捷、易操作的特点,能够轻松穿越复杂地形,到达人工难以触及的区域。通过搭载高清摄像头和传感器,无人机可以对风力发电设施进行全面、细致的巡检,收集大量的图像和数据信息。然而,单纯的无人机巡检仍存在一定的局限性。海量的图像数据需要人工进行筛选和分析,这不仅耗时耗力,而且容易遗漏关键信息。因此,引入AI智能化检测模型成为了提升巡检效率的关键。通过目标检测、图像识别等先进算法,AI模型能够对无人机采集的图像数据进行快速、准确的分析,自动识别出叶片裂纹、腐蚀、污垢等异常情况。一旦发现异常,AI模型会立即发出预警信息,并将问题位置、严重程度等信息发送到平台端,便于管理人员进行后续处理。

在实际应用中,无人机+AI智能化检测模型已经取得了显著的成效。通过定期巡航巡检,无人机能够及时发现风力发电设施中的潜在问题,避免了因设备故障导致的停电和维修成本。同时,智能化的检测模型还能够大幅提高巡检效率,降低人工成本。工程人员无需再亲自攀爬到风车塔架上进行巡检,只需在地面通过远程操作无人机即可完成相关工作。这不仅减轻了工作强度,还降低了安全风险。此外,智能化巡检还能够实现全天候作业。不受天气、地形等条件限制,无人机可以在任何时间、任何地点进行巡检工作。这大大提高了风力发电设施的可靠性和稳定性,为清洁能源的发展提供了有力保障。

本文正是基于这样的背景思考,想要尝试从实验的角度出发,开发构建无人机巡检场景下的风车叶片缺陷问题智能化检测预警模型,首先看下实例效果:

接下来看下实例数据:

本文是选择的比较经典的也是比较古老的YOLOv3来进行模型的开发,YOLOv3(You Only Look Once v3)是一种目标检测算法模型,它是YOLO系列算法的第三个版本。该算法通过将目标检测任务转化为单个神经网络的回归问题,实现了实时目标检测的能力。

YOLOv3的主要优点如下:

实时性能:YOLOv3采用了一种单阶段的检测方法,将目标检测任务转化为一个端到端的回归问题,因此具有较快的检测速度。相比于传统的两阶段方法(如Faster R-CNN),YOLOv3能够在保持较高准确率的情况下实现实时检测。

多尺度特征融合:YOLOv3引入了多尺度特征融合的机制,通过在不同层级的特征图上进行检测,能够有效地检测不同尺度的目标。这使得YOLOv3在处理尺度变化较大的场景时表现出较好的性能。

全局上下文信息:YOLOv3在网络结构中引入了全局上下文信息,通过使用较大感受野的卷积核,能够更好地理解整张图像的语义信息,提高了模型对目标的识别能力。

简洁的网络结构:YOLOv3的网络结构相对简洁,只有75个卷积层和5个池化层,使得模型较易于训练和部署,并且具有较小的模型体积。

YOLOv3也存在一些缺点:

较低的小目标检测能力:由于YOLOv3采用了较大的感受野和下采样操作,对于小目标的检测能力相对较弱。当场景中存在大量小目标时,YOLOv3可能会出现漏检或误检的情况。

较高的定位误差:由于YOLOv3将目标检测任务转化为回归问题,较粗糙的特征图和较大的感受野可能导致较高的定位误差。这意味着YOLOv3在需要较高精度的目标定位时可能会受到一定的限制。

YOLOv3是YOLO系列里程碑性质的模型,随着不断地演变和发展,目前虽然已经在性能上难以与YOLOv5之类的模型对比但是不可否认其做出的突出贡献。

我们开发构建了yolov3全系列的参数模型,包含:yolov3-tiny、yolov3和yolov3-spp,实验阶段保持完全相同的参数设置,等待训练完成我们来整体对比可视化。

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能.F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。

【loss曲线】

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。

【Precision曲线】
精确率曲线(Precision-Recall Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。

【mAP0.5】
mAP0.5(mean Average Precision at 0.5 IoU)
mAP0.5表示在IoU(交并比)阈值为0.5的情况下计算的平均精度(Average Precision,AP)。
IoU阈值决定了何时认为检测框与真实框匹配。较高的IoU阈值意味着更严格的匹配标准。
mAP0.5主要关注低阈值下的性能,即当IoU接近0.5时,模型在识别重叠框时的准确性。

【mAP0.5:0.95】
mAP0.5:0.95(mean Average Precision over IoU thresholds from 0.5 to 0.95):
mAP0.5:0.95表示在多个IoU阈值(从0.5到0.95)下计算的平均精度。
它涵盖了从低到高的IoU阈值,更全面地评估了模型在不同IoU阈值下的性能。
mAP0.5:0.95可以帮助我们了解模型在不同重叠程度下的检测能力。

从实验结果综合对比来看不难看出:tiny系列的模型效果最差,被其他系列的模型拉开了明显的差距,yolov3和yolov3-spp两款模型达到了相近的性能,且参数量相近。我们考虑最终选择使用yolov3-spp系列的模型来作为最终的推理模型。

离线推理实例如下所示:

训练可视化如下所示:

Batch实例如下:

【PR曲线】如下:

感兴趣的话也都可以自行动手尝试下!本文仅作为抛砖引玉,从实验的角度进行基础的实践开发尝试,距离真正落地应用还有很长的路要走,不过科技发展的趋势就应该是赋能作业生产,提质增效的同时降低安全隐患。


http://www.kler.cn/a/375408.html

相关文章:

  • LINUX Shell命令中$0、$1-9、$#、$?、$*、$@、$!、$、$-、$IFS含义及举例
  • 数字IC后端实现之Innovus Place跑完density爆涨案例分析
  • 安装fpm,解决*.deb=> *.rpm
  • openai api 文件分析/联网/画图代码示例
  • SpringBoot实现国密通信
  • PostgreSQL的学习心得和知识总结(一百五十七)|新的 COPY 选项 LOG_VERBOSITY
  • 为开源 AI 模型引入激励机制?解读加密 AI 协议 Sentient 的大模型代币化解决方案
  • SpringBoot抗疫物资管理:系统设计与优化
  • USIM下面的 5F50 DFHNB
  • MySQL8.0.27 MHA架构部署
  • float认识
  • redis的客户端
  • OpenCv —— 为opencv支持中文,将freetype2库编译进opencv中(附详细编译流程、测试代码)
  • T矩阵其实就是pauli基的乘,S矩阵中hv是体散射分量
  • vue3项目中el-tooltip实现内容溢出时再显示,并设置tip的最大宽度
  • 软件测试基础一(概述和核心内容)
  • 客户服务数据分析:洞察客户需求,优化服务策略
  • 软考:案例题分析1101
  • 数据结构之二叉树的收尾(性质)
  • leaflet绘制圆形方案
  • 软考(中级-软件设计师)数据库篇(1101)
  • opencv - py_imgproc - py_grabcut GrabCut 算法提取前景
  • ESP-HaloPanel:用 ESP32-C2 打造超低成本智能家居面板
  • 【机器学习】20. RNN - Recurrent Neural Networks 和 LSTM
  • 力扣题目解析--正则表达式匹配
  • 麒麟V10SP1部署postgresql+postgis+pgrouting