当前位置: 首页 > article >正文

尚硅谷大数据Hadoop教程-笔记03【MapReduce】

视频地址:尚硅谷大数据Hadoop教程(Hadoop 3.x安装搭建到集群调优)

  1. 尚硅谷大数据Hadoop教程-笔记01【入门】
  2. 尚硅谷大数据Hadoop教程-笔记02【HDFS】
  3. 尚硅谷大数据Hadoop教程-笔记03【MapReduce】
  4. 尚硅谷大数据Hadoop教程-笔记04【Yarn】
  5. 尚硅谷大数据Hadoop教程-笔记05【生产调优手册】
  6. 尚硅谷大数据Hadoop教程-笔记06【源码解析】

目录

04_尚硅谷大数据技术之Hadoop(MapReduce)V3.3

P067【067_尚硅谷_Hadoop_MapReduce_课程介绍】04:23

P068【068_尚硅谷_Hadoop_MapReduce_概述&优点缺点】10:00

P069【069_尚硅谷_Hadoop_MapReduce_核心思想】09:42

P070【070_尚硅谷_Hadoop_MapReduce_官方WC源码&序列化类型】07:08

P071【071_尚硅谷_Hadoop_MapReduce_编程规范】07:09

P072【072_尚硅谷_Hadoop_MapReduce_WordCount案例需求分析】06:56

P073【073_尚硅谷_Hadoop_MapReduce_WordCount案例环境准备】04:11

P074【074_尚硅谷_Hadoop_MapReduce_WordCount案例Mapper】14:14

P075【075_尚硅谷_Hadoop_MapReduce_WordCount案例Reducer】08:46

P076【076_尚硅谷_Hadoop_MapReduce_WordCount案例Driver】10:59

P077【077_尚硅谷_Hadoop_MapReduce_WordCount案例Debug调试】15:22

P078【078_尚硅谷_Hadoop_MapReduce_WordCount案例集群运行】12:42

P079【079_尚硅谷_Hadoop_MapReduce_序列化概述】06:30

P080【080_尚硅谷_Hadoop_MapReduce_自定义序列化步骤】08:19

P081【081_尚硅谷_Hadoop_MapReduce_序列化案例需求分析】09:09

P082【082_尚硅谷_Hadoop_MapReduce_序列化案例FlowBean】06:52

P083【083_尚硅谷_Hadoop_MapReduce_序列化案例FlowMapper】09:00

P084【084_尚硅谷_Hadoop_MapReduce_序列化案例FlowReducer】04:50

P085【085_尚硅谷_Hadoop_MapReduce_序列化案例FlowDriver】06:21

P086【086_尚硅谷_Hadoop_MapReduce_序列化案例debug调试】07:54

P087【087_尚硅谷_Hadoop_MapReduce_切片机制与MapTask并行度决定机制】15:19

P088【088_尚硅谷_Hadoop_MapReduce_Job提交流程】20:35

P089【089_尚硅谷_Hadoop_MapReduce_切片源码】19:17

P090【090_尚硅谷_Hadoop_MapReduce_切片源码总结】05:00

P091【091_尚硅谷_Hadoop_MapReduce_FileInputFormat切片机制】03:14

P092【092_尚硅谷_Hadoop_MapReduce_TextInputFormat】04:39

P093【093_尚硅谷_Hadoop_MapReduce_CombineTextInputFormat】10:18

P094【094_尚硅谷_Hadoop_MapReduce_MapReduce工作流程】16:43

P095【095_尚硅谷_Hadoop_MapReduce_Shuffle机制】06:22

P096【096_尚硅谷_Hadoop_MapReduce_默认HashPartitioner分区】12:50

P097【097_尚硅谷_Hadoop_MapReduce_自定义分区案例】07:20

P098【098_尚硅谷_Hadoop_MapReduce_分区数与Reduce个数的总结】07:21

P099【099_尚硅谷_Hadoop_MapReduce_排序概述】14:14

P100【100_尚硅谷_Hadoop_MapReduce_全排序案例】15:26

P101【101_尚硅谷_Hadoop_MapReduce_二次排序案例】03:07

P102【102_尚硅谷_Hadoop_MapReduce_区内排序案例】06:53

P103【103_尚硅谷_Hadoop_MapReduce_Combiner概述】07:18

P104【104_尚硅谷_Hadoop_MapReduce_Combiner案例】12:33

P105【105_尚硅谷_Hadoop_MapReduce_outputformat概述】03:42

P106【106_尚硅谷_Hadoop_MapReduce_自定义outputformat案例需求分析】04:22

P107【107_尚硅谷_Hadoop_MapReduce_自定义outputformat案例mapper&reducer】04:33

P108【108_尚硅谷_Hadoop_MapReduce_自定义outputformat案例执行】12:33

P109【109_尚硅谷_Hadoop_MapReduce_MapTask工作机制】03:46

P110【110_尚硅谷_Hadoop_MapReduce_ReduceTask工作机制&并行度】09:00

P111【111_尚硅谷_Hadoop_MapReduce_MapTask源码】16:57

P112【112_尚硅谷_Hadoop_MapReduce_ReduceTask源码】15:25

P113【113_尚硅谷_Hadoop_MapReduce_ReduceJoin案例需求分析】09:22

P114【114_尚硅谷_Hadoop_MapReduce_ReduceJoin案例TableBean】07:09

P115【115_尚硅谷_Hadoop_MapReduce_ReduceJoin案例Mapper】12:34

P116【116_尚硅谷_Hadoop_MapReduce_ReduceJoin案例完成】12:27

P117【117_尚硅谷_Hadoop_MapReduce_ReduceJoin案例debug】04:15

P118【118_尚硅谷_Hadoop_MapReduce_MapJoin案例需求分析】06:57

P119【119_尚硅谷_Hadoop_MapReduce_MapJoin案例完成】13:11

P120【120_尚硅谷_Hadoop_MapReduce_MapJoin案例debug】02:49

P121【121_尚硅谷_Hadoop_MapReduce_ETL数据清洗案例】15:11

P122【122_尚硅谷_Hadoop_MapReduce_MapReduce开发总结】10:51

P123【123_尚硅谷_Hadoop_MapReduce_压缩概述】16:05

P124【124_尚硅谷_Hadoop_MapReduce_压缩案例实操】10:22


04_尚硅谷大数据技术之Hadoop(MapReduce)V3.3

P067【067_尚硅谷_Hadoop_MapReduce_课程介绍】04:23

P068【068_尚硅谷_Hadoop_MapReduce_概述&优点缺点】10:00

MapReduce定义

MapReduce是一个分布式运算程序的编程框架,是用户开发“基于Hadoop的数据分析应用”的核心框架。

MapReduce核心功能是将用户编写的业务逻辑代码自带默认组件整合成一个完整的分布式运算程序,并发运行在一个Hadoop集群上。

MapReduce优缺点

P069【069_尚硅谷_Hadoop_MapReduce_核心思想】09:42

P070【070_尚硅谷_Hadoop_MapReduce_官方WC源码&序列化类型】07:08

 

package org.apache.hadoop.examples;

import java.io.IOException;
import java.io.PrintStream;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Mapper.Context;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.Reducer.Context;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;

public class WordCount
{
  public static void main(String[] args)
    throws Exception
  {
    Configuration conf = new Configuration();
    String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
    if (otherArgs.length < 2) {
      System.err.println("Usage: wordcount <in> [<in>...] <out>");
      System.exit(2);
    }
    Job job = Job.getInstance(conf, "word count");
    job.setJarByClass(WordCount.class);
    job.setMapperClass(TokenizerMapper.class);
    job.setCombinerClass(IntSumReducer.class);
    job.setReducerClass(IntSumReducer.class);
    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(IntWritable.class);
    for (int i = 0; i < otherArgs.length - 1; i++) {
      FileInputFormat.addInputPath(job, new Path(otherArgs[i]));
    }
    FileOutputFormat.setOutputPath(job, new Path(otherArgs[(otherArgs.length - 1)]));

    System.exit(job.waitForCompletion(true) ? 0 : 1);
  }

  public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable>
  {
    private IntWritable result = new IntWritable();

    public void reduce(Text key, Iterable<IntWritable> values, Reducer<Text, IntWritable, Text, IntWritable>.Context context)
      throws IOException, InterruptedException
    {
      int sum = 0;
      for (IntWritable val : values) {
        sum += val.get();
      }
      this.result.set(sum);
      context.write(key, this.result);
    }
  }

  public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable>
  {
    private static final IntWritable one = new IntWritable(1);
    private Text word = new Text();

    public void map(Object key, Text value, Mapper<Object, Text, Text, IntWritable>.Context context) throws IOException, InterruptedException
    {
      StringTokenizer itr = new StringTokenizer(value.toString());
      while (itr.hasMoreTokens()) {
        this.word.set(itr.nextToken());
        context.write(this.word, one);
      }
    }
  }
}

P071【071_尚硅谷_Hadoop_MapReduce_编程规范】07:09

MapReduce编程规范用户编写的程序分成三个部分:MapperReducerDriver

1.Mapper阶段

(1)用户自定义的Mapper要继承自己的父类

(2)Mapper的输入数据是KV对的形式(KV的类型可自定义)

(3)Mapper中的业务逻辑写在map()方法中

(4)Mapper的输出数据是KV对的形式(KV的类型可自定义)

(5)map()方法(MapTask进程)对每一个调用一次

2.Reducer阶段

(1)用户自定义的Reducer要继承自己的父类

(2)Reducer的输入数据类型对应Mapper的输出数据类型,也是KV

(3)Reducer的业务逻辑写在reduce()方法中

(4)ReduceTask进程对每一组相同k的组调用一次reduce()方法

3.Driver阶段

相当于YARN集群的客户端,用于提交我们整个程序到YARN集群,提交的是封装了MapReduce程序相关运行参数的job对象。

P072【072_尚硅谷_Hadoop_MapReduce_WordCount案例需求分析】06:56

P073【073_尚硅谷_Hadoop_MapReduce_WordCount案例环境准备】04:11

P074【074_尚硅谷_Hadoop_MapReduce_WordCount案例Mapper】14:14

package com.atguigu.mapreduce.wordcount;

import java.io.IOException;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

/**
 * KEYIN,map阶段输入的key的类型:LongWritable
 * VALUEIN,map阶段输入value类型:Text
 * KEYOUT,map阶段输出的Key类型:Text
 * VALUEOUT,map阶段输出的value类型:IntWritable
 */
public class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
    private Text outK = new Text();
    private IntWritable outV = new IntWritable(1);

    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        //1.获取一行
        //atguigu atguigu
        String line = value.toString();

        //2.切割
        //atguigu
        //atguigu
        String[] words = line.split(" ");

        //3.循环写出(输出)
        for (String word : words) {
            //封装outk
            outK.set(word);
            //写出
            context.write(outK, outV);
        }
    }
}

P075【075_尚硅谷_Hadoop_MapReduce_WordCount案例Reducer】08:46

package com.atguigu.mapreduce.wordcount;

import java.io.IOException;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

/**
 * KEYIN, reduce阶段输入的key的类型:Text
 * VALUEIN, reduce阶段输入value类型:IntWritable
 * KEYOUT, reduce阶段输出的Key类型:Text
 * VALUEOUT, reduce阶段输出的value类型:IntWritable
 */
public class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
    private IntWritable outV = new IntWritable();

    @Override
    protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {

        int sum = 0;
        //atguigu, (1,1)
        //累加
        for (IntWritable value : values) {
            sum += value.get();
        }

        outV.set(sum);

        //写出
        context.write(key, outV);
    }
}

P076【076_尚硅谷_Hadoop_MapReduce_WordCount案例Driver】10:59

package com.atguigu.mapreduce.wordcount;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WordCountDriver {
    public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
        //1.获取job,获取配置信息以及获取job对象
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf);

        //2.设置jar包路径,关联本Driver程序的jar
        job.setJarByClass(WordCountDriver.class);

        //3.关联Mapper和Reducer的jar
        job.setMapperClass(WordCountMapper.class);
        job.setReducerClass(WordCountReducer.class);

        //4.设置Mapper输出的kv类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(IntWritable.class);

        //5.设置最终输出的kV类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);

        //6.设置输入路径和输出路径
        FileInputFormat.setInputPaths(job, new Path("D:\\bigData\\hadoopInput\\inputword"));
        FileOutputFormat.setOutputPath(job, new Path("D:\\bigData\\hadoopInput\\inputword\\output888"));

        //7.提交job
        boolean result = job.waitForCompletion(true);

        System.exit(result ? 0 : 1);
    }
}

P077【077_尚硅谷_Hadoop_MapReduce_WordCount案例Debug调试】15:22

Exception in thread "main" java.lang.UnsatisfiedLinkError: org.apache.hadoop.io.nativeio.NativeIO$Windows.access0(Ljava/lang/String;I)Z
    at org.apache.hadoop.io.nativeio.NativeIO$Windows.access0(Native Method)
    at org.apache.hadoop.io.nativeio.NativeIO$Windows.access(NativeIO.java:640)
    at org.apache.hadoop.fs.FileUtil.canRead(FileUtil.java:1223)
    at org.apache.hadoop.fs.FileUtil.list(FileUtil.java:1428)
    at org.apache.hadoop.fs.RawLocalFileSystem.listStatus(RawLocalFileSystem.java:468)
    at org.apache.hadoop.fs.FileSystem.listStatus(FileSystem.java:1868)
    at org.apache.hadoop.fs.FileSystem.listStatus(FileSystem.java:1910)
    at org.apache.hadoop.fs.FileSystem$4.<init>(FileSystem.java:2072)
    at org.apache.hadoop.fs.FileSystem.listLocatedStatus(FileSystem.java:2071)
    at org.apache.hadoop.fs.ChecksumFileSystem.listLocatedStatus(ChecksumFileSystem.java:693)
    at org.apache.hadoop.mapreduce.lib.input.FileInputFormat.singleThreadedListStatus(FileInputFormat.java:312)
    at org.apache.hadoop.mapreduce.lib.input.FileInputFormat.listStatus(FileInputFormat.java:274)
    at org.apache.hadoop.mapreduce.lib.input.FileInputFormat.getSplits(FileInputFormat.java:396)
    at org.apache.hadoop.mapreduce.JobSubmitter.writeNewSplits(JobSubmitter.java:310)
    at org.apache.hadoop.mapreduce.JobSubmitter.writeSplits(JobSubmitter.java:327)
    at org.apache.hadoop.mapreduce.JobSubmitter.submitJobInternal(JobSubmitter.java:200)
    at org.apache.hadoop.mapreduce.Job$11.run(Job.java:1570)
    at org.apache.hadoop.mapreduce.Job$11.run(Job.java:1567)
    at java.security.AccessController.doPrivileged(Native Method)
    at javax.security.auth.Subject.doAs(Subject.java:422)
    at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1729)
    at org.apache.hadoop.mapreduce.Job.submit(Job.java:1567)
    at org.apache.hadoop.mapreduce.Job.waitForCompletion(Job.java:1588)
    at com.atguigu.mapreduce.wordcount.WordCountDriver.main(WordCountDriver.java:39)

进程已结束,退出代码1
错误Exception in thread “main“ java.lang.UnsatisfiedLinkError: org.apache.hadoop.io.nativeio.NativeIO_"exception in thread \"main\" 2: no such file"

 

不需要启动Linux hadoop集群,是在Windows本地运行的。

    <dependency>

        <groupId>org.apache.hadoop</groupId>

        <artifactId>hadoop-client</artifactId>

        <version>3.1.3</version>

    </dependency>

P078【078_尚硅谷_Hadoop_MapReduce_WordCount案例集群运行】12:42

[atguigu@node1 hadoop-3.1.3]$ hadoop jar wc.jar com.atguigu.mapreduce.wordcount2.WordCountDriver /input /output
Exception in thread "main" java.lang.ClassNotFoundException: com.atguigu.mapreduce.wordcount2.WordCountDriver
        at java.net.URLClassLoader.findClass(URLClassLoader.java:382)
        at java.lang.ClassLoader.loadClass(ClassLoader.java:418)
        at java.lang.ClassLoader.loadClass(ClassLoader.java:351)
        at java.lang.Class.forName0(Native Method)
        at java.lang.Class.forName(Class.java:348)
        at org.apache.hadoop.util.RunJar.run(RunJar.java:311)
        at org.apache.hadoop.util.RunJar.main(RunJar.java:232)
[atguigu@node1 hadoop-3.1.3]$

企业开发,通常环境下是:在Windows环境下搭建hadoop环境编写代码,编写好代码后进行打包,打包好之后上传到hdfs执行命令。

在node1中执行如下命令:

bin/myhadoop.sh start
jpsall
pwd
cd /opt/module/hadoop-3.1.3/
ll
hadoop jar wc.jar com.atguigu.mapreduce.wordcount2.WordCountDriver /input /output # 报错,找不到类,重新打包上传!
hadoop jar wc2.jar com.atguigu.mapreduce.wordcount2.WordCountDriver /input /output
history

P079【079_尚硅谷_Hadoop_MapReduce_序列化概述】06:30

P080【080_尚硅谷_Hadoop_MapReduce_自定义序列化步骤】08:19

自定义bean对象实现序列化接口(Writable)

在企业开发中往往常用的基本序列化类型不能满足所有需求,比如在Hadoop框架内部传递一个bean对象,那么该对象就需要实现序列化接口。

具体实现bean对象序列化步骤如下7步。

(1)必须实现Writable接口

(2)反序列化时,需要反射调用空参构造函数,所以必须有空参构造

public FlowBean() {

    super();

}

(3)重写序列化方法

@Override

public void write(DataOutput out) throws IOException {

    out.writeLong(upFlow);

    out.writeLong(downFlow);

    out.writeLong(sumFlow);

}

(4)重写反序列化方法

@Override

public void readFields(DataInput in) throws IOException {

    upFlow = in.readLong();

    downFlow = in.readLong();

    sumFlow = in.readLong();

}

5注意反序列化的顺序和序列化的顺序完全一致

(6)要想把结果显示在文件中,需要重写toString(),可用"\t"分开,方便后续用。

(7)如果需要将自定义的bean放在key中传输,则还需要实现Comparable接口,因为MapReduce框中的Shuffle过程要求对key必须能排序。详见后面排序案例。

@Override

public int compareTo(FlowBean o) {

    // 倒序排列,从大到小

    return this.sumFlow > o.getSumFlow() ? -1 : 1;

}

P081【081_尚硅谷_Hadoop_MapReduce_序列化案例需求分析】09:09

P082【082_尚硅谷_Hadoop_MapReduce_序列化案例FlowBean】06:52

package com.atguigu.mapreduce.writable;

import org.apache.hadoop.io.Writable;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

/**
 * 1、定义类实现writable接口
 * 2、重写序列化和反序列化方法
 * 3、重写空参构造
 * 4、toString方法
 */
public class FlowBean implements Writable {
    private long upFlow; //上行流量
    private long downFlow; //下行流量
    private long sumFlow; //总流量

    //空参构造
    public FlowBean() {
    }

    public long getUpFlow() {
        return upFlow;
    }

    public void setUpFlow(long upFlow) {
        this.upFlow = upFlow;
    }

    public long getDownFlow() {
        return downFlow;
    }

    public void setDownFlow(long downFlow) {
        this.downFlow = downFlow;
    }

    public long getSumFlow() {
        return sumFlow;
    }

    public void setSumFlow(long sumFlow) {
        this.sumFlow = sumFlow;
    }

    public void setSumFlow() {
        this.sumFlow = this.upFlow + this.downFlow;
    }

    @Override
    public void write(DataOutput out) throws IOException {
        out.writeLong(upFlow);
        out.writeLong(downFlow);
        out.writeLong(sumFlow);
    }

    @Override
    public void readFields(DataInput in) throws IOException {
        this.upFlow = in.readLong();
        this.downFlow = in.readLong();
        this.sumFlow = in.readLong();
    }

    @Override
    public String toString() {
        return upFlow + "\t" + downFlow + "\t" + sumFlow;
    }
}

P083【083_尚硅谷_Hadoop_MapReduce_序列化案例FlowMapper】09:00

package com.atguigu.mapreduce.writable;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;

public class FlowMapper extends Mapper<LongWritable, Text, Text, FlowBean> {
    private Text outK = new Text();
    private FlowBean outV = new FlowBean();

    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        //1、获取一行
        // 1	13736230513	192.196.100.1	www.atguigu.com	2481	24681	200
        String line = value.toString();

        //2、切割
        // 1,13736230513,192.196.100.1,www.atguigu.com,2481,24681,200   7 - 3= 4位
        // 2	13846544121	192.196.100.2			264	0	200  6 - 3 = 3位
        String[] split = line.split("\t");

        //3、抓取想要的数据
        // 手机号:13736230513
        // 上行流量和下行流量:2481,24681
        String phone = split[1];
        String up = split[split.length - 3];
        String down = split[split.length - 2];

        //4、封装
        outK.set(phone);
        outV.setUpFlow(Long.parseLong(up));
        outV.setDownFlow(Long.parseLong(down));
        outV.setSumFlow();

        //5、写出
        context.write(outK, outV);
    }
}

P084【084_尚硅谷_Hadoop_MapReduce_序列化案例FlowReducer】04:50

package com.atguigu.mapreduce.writable;

import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;

public class FlowReducer extends Reducer<Text, FlowBean, Text, FlowBean> {
    private FlowBean outV = new FlowBean();

    @Override
    protected void reduce(Text key, Iterable<FlowBean> values, Context context) throws IOException, InterruptedException {
        //1、遍历集合累加值
        long totalUp = 0;
        long totaldown = 0;

        for (FlowBean value : values) {
            totalUp += value.getUpFlow();
            totaldown += value.getDownFlow();
        }

        //2、封装outk和outv
        outV.setUpFlow(totalUp);
        outV.setDownFlow(totaldown);
        outV.setSumFlow();

        //3、写出
        context.write(key, outV);
    }
}

P085【085_尚硅谷_Hadoop_MapReduce_序列化案例FlowDriver】06:21

package com.atguigu.mapreduce.writable;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;

public class FlowDriver {
    public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
        //1、获取job
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf);

        //2、设置jar
        job.setJarByClass(FlowDriver.class);

        //3、关联mapper和Reducer
        job.setMapperClass(FlowMapper.class);
        job.setReducerClass(FlowReducer.class);

        //4、设置mapper输出的key和value类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(FlowBean.class);

        //5、设置数据最终输出的key和value类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(FlowBean.class);

        //6、设置数据的输入路径和输出路径
        FileInputFormat.setInputPaths(job, new Path("D:\\bigData\\hadoopInput\\inputflow"));
        FileOutputFormat.setOutputPath(job, new Path("D:\\bigData\\hadoopInput\\inputflow\\output"));

        //7、提交job
        boolean result = job.waitForCompletion(true);
        System.exit(result ? 0 : 1);
    }
}

P086【086_尚硅谷_Hadoop_MapReduce_序列化案例debug调试】07:54

P087【087_尚硅谷_Hadoop_MapReduce_切片机制与MapTask并行度决定机制】15:19

第3章 MapReduce框架原理

数据切片与MapTask并行度决定机制

P088【088_尚硅谷_Hadoop_MapReduce_Job提交流程】20:35

章节3.1.2,省流:18:46

1)Job提交流程源码详解

waitForCompletion()

submit();

// 1建立连接
	connect();	
		// 1)创建提交Job的代理
		new Cluster(getConfiguration());
			// (1)判断是本地运行环境还是yarn集群运行环境
			initialize(jobTrackAddr, conf); 

// 2 提交job
submitter.submitJobInternal(Job.this, cluster)

	// 1)创建给集群提交数据的Stag路径
	Path jobStagingArea = JobSubmissionFiles.getStagingDir(cluster, conf);

	// 2)获取jobid ,并创建Job路径
	JobID jobId = submitClient.getNewJobID();

	// 3)拷贝jar包到集群
    copyAndConfigureFiles(job, submitJobDir);	
	rUploader.uploadFiles(job, jobSubmitDir);

	// 4)计算切片,生成切片规划文件
    writeSplits(job, submitJobDir);
		maps = writeNewSplits(job, jobSubmitDir);
		input.getSplits(job);

	// 5)向Stag路径写XML配置文件
    writeConf(conf, submitJobFile);
	conf.writeXml(out);

	// 6)提交Job,返回提交状态
    status = submitClient.submitJob(jobId, submitJobDir.toString(), job.getCredentials());

P089【089_尚硅谷_Hadoop_MapReduce_切片源码】19:17

P090【090_尚硅谷_Hadoop_MapReduce_切片源码总结】05:00

2)FileInputFormat切片源码解析(input.getSplits(job)

  • (1)程序先找到你数据存储的目录。
  • (2)开始遍历处理(规划切片)目录下的每一个文件。
  • (3)遍历第一个文件ss.txt
    •         a)获取文件大小fs.sizeOf(ss.txt)
      •         b)计算切片大小,computeSplitSize(Math.max(minSize, Math.min(maxSize, blocksize)))=blocksize=128M
        •         c)默认情况下,切片大小=blocksize
          •         d)开始切,形成第1个切片:ss.txt—0:128M、第2个切片ss.txt—128:256M、第3个切片ss.txt—256M:300M(每次切片时,都要判断切完剩下的部分是否大于块的1.1倍,不大于1.1倍就划分一块切片)
            •         e)将切片信息写到一个切片规划文件中。
              •         f)整个切片的核心过程在getSplit()方法中完成。
                •         g)InputSplit只记录了切片的元数据信息,比如起始位置、长度以及所在的节点列表等。
  • (4)提交切片规划文件到YARN上,YARN上的MrAppMaster就可以根据切片规划文件计算开启MapTask个数。

P091【091_尚硅谷_Hadoop_MapReduce_FileInputFormat切片机制】03:14

3.1.3 FileInputFormat 切片机制

FileInputFormat切片机制

FileInputFormat切片大小的参数配置

P092【092_尚硅谷_Hadoop_MapReduce_TextInputFormat】04:39

3.1.4 TextInputFormat

P093【093_尚硅谷_Hadoop_MapReduce_CombineTextInputFormat】10:18

3.1.5 CombineTextInputFormat切片机制

P094【094_尚硅谷_Hadoop_MapReduce_MapReduce工作流程】16:43

3.2章节

P095【095_尚硅谷_Hadoop_MapReduce_Shuffle机制】06:22

Map方法之后,Reduce方法之前的数据处理过程称之为Shuffle。

Shuffle机制

P096【096_尚硅谷_Hadoop_MapReduce_默认HashPartitioner分区】12:50

3.3.2 Partition分区

 

P097【097_尚硅谷_Hadoop_MapReduce_自定义分区案例】07:20

3.3.3 Partition分区案例实操

 

package com.atguigu.mapreduce.partitioner2;

import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Partitioner;

public class ProvincePartitioner extends Partitioner<Text, FlowBean> {
    @Override
    public int getPartition(Text text, FlowBean flowBean, int numPartitions) {
        //text是手机号
        String phone = text.toString();

        String prePhone = phone.substring(0, 3);

        int partition;

        if ("136".equals(prePhone)) {
            partition = 0;
        } else if ("137".equals(prePhone)) {
            partition = 1;
        } else if ("138".equals(prePhone)) {
            partition = 2;
        } else if ("139".equals(prePhone)) {
            partition = 3;
        } else {
            partition = 4;
        }

        return partition;
    }
}

P098【098_尚硅谷_Hadoop_MapReduce_分区数与Reduce个数的总结】07:21

P099【099_尚硅谷_Hadoop_MapReduce_排序概述】14:14

排序概述

排序是MapReduce框架中最重要的操作之一。MapTask和ReduceTask均会对数据按照key进行排序。该操作属于Hadoop的默认行为。任何应用程序中的数据均会被排序,而不管逻辑上是否需要。默认排序是按照字典顺序排序,且实现该排序的方法是快速排序。

自定义排序WritableComparable原理分析

bean对象做为key传输,需要实现WritableComparable接口重写compareTo方法,就可以实现排序。

@Override

public int compareTo(FlowBean bean) {

    int result;

    // 按照总流量大小,倒序排列

    if (this.sumFlow > bean.getSumFlow()) {

        result = -1;

    }else if (this.sumFlow < bean.getSumFlow()) {

        result = 1;

    }else {

        result = 0;

    }

    return result;

}

P100【100_尚硅谷_Hadoop_MapReduce_全排序案例】15:26

P101【101_尚硅谷_Hadoop_MapReduce_二次排序案例】03:07

P102【102_尚硅谷_Hadoop_MapReduce_区内排序案例】06:53

D:\Java\jdk1.8\jdk1.8.0_201\bin\java.exe "-javaagent:D:\JetBrains\IntelliJ IDEA 2021.3\lib\idea_rt.jar=50393:D:\JetBrains\IntelliJ IDEA 2021.3\bin" -Dfile.encoding=UTF-8 -classpath D:\Java\jdk1.8\jdk1.8.0_201\jre\lib\charsets.jar;D:\Java\jdk1.8\jdk1.8.0_201\jre\lib\deploy.jar;D:\Java\jdk1.8\jdk1.8.0_201\jre\lib\ext\access-bridge-64.jar;D:\Java\jdk1.8\jdk1.8.0_201\jre\lib\ext\cldrdata.jar;D:\Java\jdk1.8\jdk1.8.0_201\jre\lib\ext\dnsns.jar;D:\Java\jdk1.8\jdk1.8.0_201\jre\lib\ext\jaccess.jar;D:\Java\jdk1.8\jdk1.8.0_201\jre\lib\ext\jfxrt.jar;D:\Java\jdk1.8\jdk1.8.0_201\jre\lib\ext\localedata.jar;D:\Java\jdk1.8\jdk1.8.0_201\jre\lib\ext\nashorn.jar;D:\Java\jdk1.8\jdk1.8.0_201\jre\lib\ext\sunec.jar;D:\Java\jdk1.8\jdk1.8.0_201\jre\lib\ext\sunjce_provider.jar;D:\Java\jdk1.8\jdk1.8.0_201\jre\lib\ext\sunmscapi.jar;D:\Java\jdk1.8\jdk1.8.0_201\jre\lib\ext\sunpkcs11.jar;D:\Java\jdk1.8\jdk1.8.0_201\jre\lib\ext\zipfs.jar;D:\Java\jdk1.8\jdk1.8.0_201\jre\lib\javaws.jar;D:\Java\jdk1.8\jdk1.8.0_201\jre\lib\jce.jar;D:\Java\jdk1.8\jdk1.8.0_201\jre\lib\jfr.jar;D:\Java\jdk1.8\jdk1.8.0_201\jre\lib\jfxswt.jar;D:\Java\jdk1.8\jdk1.8.0_201\jre\lib\jsse.jar;D:\Java\jdk1.8\jdk1.8.0_201\jre\lib\management-agent.jar;D:\Java\jdk1.8\jdk1.8.0_201\jre\lib\plugin.jar;D:\Java\jdk1.8\jdk1.8.0_201\jre\lib\resources.jar;D:\Java\jdk1.8\jdk1.8.0_201\jre\lib\rt.jar;D:\allCode\JetBrains\IdeaProject\MapReduceDemo\target\classes;D:\maven\maven_repository\org\apache\hadoop\hadoop-client\3.1.3\hadoop-client-3.1.3.jar;D:\maven\maven_repository\org\apache\hadoop\hadoop-common\3.1.3\hadoop-common-3.1.3.jar;D:\maven\maven_repository\com\google\guava\guava\27.0-jre\guava-27.0-jre.jar;D:\maven\maven_repository\com\google\guava\failureaccess\1.0\failureaccess-1.0.jar;D:\maven\maven_repository\com\google\guava\listenablefuture\9999.0-empty-to-avoid-conflict-with-guava\listenablefuture-9999.0-empty-to-avoid-conflict-with-guava.jar;D:\maven\maven_repository\org\checkerframework\checker-qual\2.5.2\checker-qual-2.5.2.jar;D:\maven\maven_repository\com\google\errorprone\error_prone_annotations\2.2.0\error_prone_annotations-2.2.0.jar;D:\maven\maven_repository\com\google\j2objc\j2objc-annotations\1.1\j2objc-annotations-1.1.jar;D:\maven\maven_repository\org\codehaus\mojo\animal-sniffer-annotations\1.17\animal-sniffer-annotations-1.17.jar;D:\maven\maven_repository\commons-cli\commons-cli\1.2\commons-cli-1.2.jar;D:\maven\maven_repository\org\apache\commons\commons-math3\3.1.1\commons-math3-3.1.1.jar;D:\maven\maven_repository\org\apache\httpcomponents\httpclient\4.5.2\httpclient-4.5.2.jar;D:\maven\maven_repository\org\apache\httpcomponents\httpcore\4.4.4\httpcore-4.4.4.jar;D:\maven\maven_repository\commons-net\commons-net\3.6\commons-net-3.6.jar;D:\maven\maven_repository\commons-collections\commons-collections\3.2.2\commons-collections-3.2.2.jar;D:\maven\maven_repository\org\eclipse\jetty\jetty-servlet\9.3.24.v20180605\jetty-servlet-9.3.24.v20180605.jar;D:\maven\maven_repository\org\eclipse\jetty\jetty-security\9.3.24.v20180605\jetty-security-9.3.24.v20180605.jar;D:\maven\maven_repository\org\eclipse\jetty\jetty-webapp\9.3.24.v20180605\jetty-webapp-9.3.24.v20180605.jar;D:\maven\maven_repository\org\eclipse\jetty\jetty-xml\9.3.24.v20180605\jetty-xml-9.3.24.v20180605.jar;D:\maven\maven_repository\javax\servlet\jsp\jsp-api\2.1\jsp-api-2.1.jar;D:\maven\maven_repository\com\sun\jersey\jersey-servlet\1.19\jersey-servlet-1.19.jar;D:\maven\maven_repository\commons-logging\commons-logging\1.1.3\commons-logging-1.1.3.jar;D:\maven\maven_repository\commons-lang\commons-lang\2.6\commons-lang-2.6.jar;D:\maven\maven_repository\commons-beanutils\commons-beanutils\1.9.3\commons-beanutils-1.9.3.jar;D:\maven\maven_repository\org\apache\commons\commons-configuration2\2.1.1\commons-configuration2-2.1.1.jar;D:\maven\maven_repository\org\apache\commons\commons-lang3\3.4\commons-lang3-3.4.jar;D:\maven\maven_repository\org\apache\avro\avro\1.7.7\avro-1.7.7.jar;D:\maven\maven_repository\org\codehaus\jackson\jackson-core-asl\1.9.13\jackson-core-asl-1.9.13.jar;D:\maven\maven_repository\org\codehaus\jackson\jackson-mapper-asl\1.9.13\jackson-mapper-asl-1.9.13.jar;D:\maven\maven_repository\com\thoughtworks\paranamer\paranamer\2.3\paranamer-2.3.jar;D:\maven\maven_repository\org\xerial\snappy\snappy-java\1.0.5\snappy-java-1.0.5.jar;D:\maven\maven_repository\com\google\re2j\re2j\1.1\re2j-1.1.jar;D:\maven\maven_repository\com\google\protobuf\protobuf-java\2.5.0\protobuf-java-2.5.0.jar;D:\maven\maven_repository\com\google\code\gson\gson\2.2.4\gson-2.2.4.jar;D:\maven\maven_repository\org\apache\hadoop\hadoop-auth\3.1.3\hadoop-auth-3.1.3.jar;D:\maven\maven_repository\com\nimbusds\nimbus-jose-jwt\4.41.1\nimbus-jose-jwt-4.41.1.jar;D:\maven\maven_repository\com\github\stephenc\jcip\jcip-annotations\1.0-1\jcip-annotations-1.0-1.jar;D:\maven\maven_repository\net\minidev\json-smart\2.3\json-smart-2.3.jar;D:\maven\maven_repository\net\minidev\accessors-smart\1.2\accessors-smart-1.2.jar;D:\maven\maven_repository\org\ow2\asm\asm\5.0.4\asm-5.0.4.jar;D:\maven\maven_repository\org\apache\curator\curator-framework\2.13.0\curator-framework-2.13.0.jar;D:\maven\maven_repository\org\apache\curator\curator-client\2.13.0\curator-client-2.13.0.jar;D:\maven\maven_repository\org\apache\curator\curator-recipes\2.13.0\curator-recipes-2.13.0.jar;D:\maven\maven_repository\com\google\code\findbugs\jsr305\3.0.0\jsr305-3.0.0.jar;D:\maven\maven_repository\org\apache\htrace\htrace-core4\4.1.0-incubating\htrace-core4-4.1.0-incubating.jar;D:\maven\maven_repository\org\apache\commons\commons-compress\1.18\commons-compress-1.18.jar;D:\maven\maven_repository\org\apache\kerby\kerb-simplekdc\1.0.1\kerb-simplekdc-1.0.1.jar;D:\maven\maven_repository\org\apache\kerby\kerb-client\1.0.1\kerb-client-1.0.1.jar;D:\maven\maven_repository\org\apache\kerby\kerby-config\1.0.1\kerby-config-1.0.1.jar;D:\maven\maven_repository\org\apache\kerby\kerb-core\1.0.1\kerb-core-1.0.1.jar;D:\maven\maven_repository\org\apache\kerby\kerby-pkix\1.0.1\kerby-pkix-1.0.1.jar;D:\maven\maven_repository\org\apache\kerby\kerby-asn1\1.0.1\kerby-asn1-1.0.1.jar;D:\maven\maven_repository\org\apache\kerby\kerby-util\1.0.1\kerby-util-1.0.1.jar;D:\maven\maven_repository\org\apache\kerby\kerb-common\1.0.1\kerb-common-1.0.1.jar;D:\maven\maven_repository\org\apache\kerby\kerb-crypto\1.0.1\kerb-crypto-1.0.1.jar;D:\maven\maven_repository\org\apache\kerby\kerb-util\1.0.1\kerb-util-1.0.1.jar;D:\maven\maven_repository\org\apache\kerby\token-provider\1.0.1\token-provider-1.0.1.jar;D:\maven\maven_repository\org\apache\kerby\kerb-admin\1.0.1\kerb-admin-1.0.1.jar;D:\maven\maven_repository\org\apache\kerby\kerb-server\1.0.1\kerb-server-1.0.1.jar;D:\maven\maven_repository\org\apache\kerby\kerb-identity\1.0.1\kerb-identity-1.0.1.jar;D:\maven\maven_repository\org\apache\kerby\kerby-xdr\1.0.1\kerby-xdr-1.0.1.jar;D:\maven\maven_repository\com\fasterxml\jackson\core\jackson-databind\2.7.8\jackson-databind-2.7.8.jar;D:\maven\maven_repository\com\fasterxml\jackson\core\jackson-core\2.7.8\jackson-core-2.7.8.jar;D:\maven\maven_repository\org\codehaus\woodstox\stax2-api\3.1.4\stax2-api-3.1.4.jar;D:\maven\maven_repository\com\fasterxml\woodstox\woodstox-core\5.0.3\woodstox-core-5.0.3.jar;D:\maven\maven_repository\org\apache\hadoop\hadoop-hdfs-client\3.1.3\hadoop-hdfs-client-3.1.3.jar;D:\maven\maven_repository\com\squareup\okhttp\okhttp\2.7.5\okhttp-2.7.5.jar;D:\maven\maven_repository\com\squareup\okio\okio\1.6.0\okio-1.6.0.jar;D:\maven\maven_repository\com\fasterxml\jackson\core\jackson-annotations\2.7.8\jackson-annotations-2.7.8.jar;D:\maven\maven_repository\org\apache\hadoop\hadoop-yarn-api\3.1.3\hadoop-yarn-api-3.1.3.jar;D:\maven\maven_repository\javax\xml\bind\jaxb-api\2.2.11\jaxb-api-2.2.11.jar;D:\maven\maven_repository\org\apache\hadoop\hadoop-yarn-client\3.1.3\hadoop-yarn-client-3.1.3.jar;D:\maven\maven_repository\org\apache\hadoop\hadoop-mapreduce-client-core\3.1.3\hadoop-mapreduce-client-core-3.1.3.jar;D:\maven\maven_repository\org\apache\hadoop\hadoop-yarn-common\3.1.3\hadoop-yarn-common-3.1.3.jar;D:\maven\maven_repository\javax\servlet\javax.servlet-api\3.1.0\javax.servlet-api-3.1.0.jar;D:\maven\maven_repository\org\eclipse\jetty\jetty-util\9.3.24.v20180605\jetty-util-9.3.24.v20180605.jar;D:\maven\maven_repository\com\sun\jersey\jersey-core\1.19\jersey-core-1.19.jar;D:\maven\maven_repository\javax\ws\rs\jsr311-api\1.1.1\jsr311-api-1.1.1.jar;D:\maven\maven_repository\com\sun\jersey\jersey-client\1.19\jersey-client-1.19.jar;D:\maven\maven_repository\com\fasterxml\jackson\module\jackson-module-jaxb-annotations\2.7.8\jackson-module-jaxb-annotations-2.7.8.jar;D:\maven\maven_repository\com\fasterxml\jackson\jaxrs\jackson-jaxrs-json-provider\2.7.8\jackson-jaxrs-json-provider-2.7.8.jar;D:\maven\maven_repository\com\fasterxml\jackson\jaxrs\jackson-jaxrs-base\2.7.8\jackson-jaxrs-base-2.7.8.jar;D:\maven\maven_repository\org\apache\hadoop\hadoop-mapreduce-client-jobclient\3.1.3\hadoop-mapreduce-client-jobclient-3.1.3.jar;D:\maven\maven_repository\org\apache\hadoop\hadoop-mapreduce-client-common\3.1.3\hadoop-mapreduce-client-common-3.1.3.jar;D:\maven\maven_repository\org\apache\hadoop\hadoop-annotations\3.1.3\hadoop-annotations-3.1.3.jar;D:\maven\maven_repository\junit\junit\4.12\junit-4.12.jar;D:\maven\maven_repository\org\hamcrest\hamcrest-core\1.3\hamcrest-core-1.3.jar;D:\maven\maven_repository\org\slf4j\slf4j-log4j12\1.7.30\slf4j-log4j12-1.7.30.jar;D:\maven\maven_repository\org\slf4j\slf4j-api\1.7.30\slf4j-api-1.7.30.jar;D:\maven\maven_repository\log4j\log4j\1.2.17\log4j-1.2.17.jar;D:\maven\maven_repository\org\apache\maven\plugins\maven-assembly-plugin\3.0.0\maven-assembly-plugin-3.0.0.jar;D:\maven\maven_repository\org\apache\maven\maven-plugin-api\3.0\maven-plugin-api-3.0.jar;D:\maven\maven_repository\org\sonatype\sisu\sisu-inject-plexus\1.4.2\sisu-inject-plexus-1.4.2.jar;D:\maven\maven_repository\org\sonatype\sisu\sisu-inject-bean\1.4.2\sisu-inject-bean-1.4.2.jar;D:\maven\maven_repository\org\sonatype\sisu\sisu-guice\2.1.7\sisu-guice-2.1.7-noaop.jar;D:\maven\maven_repository\org\apache\maven\maven-core\3.0\maven-core-3.0.jar;D:\maven\maven_repository\org\apache\maven\maven-settings\3.0\maven-settings-3.0.jar;D:\maven\maven_repository\org\apache\maven\maven-settings-builder\3.0\maven-settings-builder-3.0.jar;D:\maven\maven_repository\org\apache\maven\maven-repository-metadata\3.0\maven-repository-metadata-3.0.jar;D:\maven\maven_repository\org\apache\maven\maven-model-builder\3.0\maven-model-builder-3.0.jar;D:\maven\maven_repository\org\apache\maven\maven-aether-provider\3.0\maven-aether-provider-3.0.jar;D:\maven\maven_repository\org\sonatype\aether\aether-impl\1.7\aether-impl-1.7.jar;D:\maven\maven_repository\org\sonatype\aether\aether-spi\1.7\aether-spi-1.7.jar;D:\maven\maven_repository\org\sonatype\aether\aether-api\1.7\aether-api-1.7.jar;D:\maven\maven_repository\org\sonatype\aether\aether-util\1.7\aether-util-1.7.jar;D:\maven\maven_repository\org\codehaus\plexus\plexus-classworlds\2.2.3\plexus-classworlds-2.2.3.jar;D:\maven\maven_repository\org\codehaus\plexus\plexus-component-annotations\1.5.5\plexus-component-annotations-1.5.5.jar;D:\maven\maven_repository\org\sonatype\plexus\plexus-sec-dispatcher\1.3\plexus-sec-dispatcher-1.3.jar;D:\maven\maven_repository\org\sonatype\plexus\plexus-cipher\1.4\plexus-cipher-1.4.jar;D:\maven\maven_repository\org\apache\maven\maven-artifact\3.0\maven-artifact-3.0.jar;D:\maven\maven_repository\org\apache\maven\maven-model\3.0\maven-model-3.0.jar;D:\maven\maven_repository\org\apache\maven\shared\maven-common-artifact-filters\3.0.1\maven-common-artifact-filters-3.0.1.jar;D:\maven\maven_repository\org\apache\maven\shared\maven-shared-utils\3.1.0\maven-shared-utils-3.1.0.jar;D:\maven\maven_repository\org\apache\maven\shared\maven-artifact-transfer\0.9.0\maven-artifact-transfer-0.9.0.jar;D:\maven\maven_repository\org\codehaus\plexus\plexus-interpolation\1.24\plexus-interpolation-1.24.jar;D:\maven\maven_repository\org\codehaus\plexus\plexus-archiver\3.4\plexus-archiver-3.4.jar;D:\maven\maven_repository\org\iq80\snappy\snappy\0.4\snappy-0.4.jar;D:\maven\maven_repository\org\tukaani\xz\1.5\xz-1.5.jar;D:\maven\maven_repository\org\apache\maven\shared\file-management\3.0.0\file-management-3.0.0.jar;D:\maven\maven_repository\org\apache\maven\shared\maven-shared-io\3.0.0\maven-shared-io-3.0.0.jar;D:\maven\maven_repository\org\apache\maven\maven-compat\3.0\maven-compat-3.0.jar;D:\maven\maven_repository\org\apache\maven\wagon\wagon-provider-api\2.10\wagon-provider-api-2.10.jar;D:\maven\maven_repository\commons-io\commons-io\2.5\commons-io-2.5.jar;D:\maven\maven_repository\org\apache\maven\shared\maven-filtering\3.1.1\maven-filtering-3.1.1.jar;D:\maven\maven_repository\org\sonatype\plexus\plexus-build-api\0.0.7\plexus-build-api-0.0.7.jar;D:\maven\maven_repository\org\codehaus\plexus\plexus-io\2.7.1\plexus-io-2.7.1.jar;D:\maven\maven_repository\org\apache\maven\maven-archiver\3.1.1\maven-archiver-3.1.1.jar;D:\maven\maven_repository\org\codehaus\plexus\plexus-utils\3.0.24\plexus-utils-3.0.24.jar;D:\maven\maven_repository\commons-codec\commons-codec\1.6\commons-codec-1.6.jar com.atguigu.mapreduce.partitionerandwritableComparable.FlowDriver
2023-03-27 09:31:37,456 WARN [org.apache.hadoop.util.NativeCodeLoader] - Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
  2023-03-27 09:31:37,793 WARN [org.apache.hadoop.metrics2.impl.MetricsConfig] - Cannot locate configuration: tried hadoop-metrics2-jobtracker.properties,hadoop-metrics2.properties
  2023-03-27 09:31:37,830 INFO [org.apache.hadoop.metrics2.impl.MetricsSystemImpl] - Scheduled Metric snapshot period at 10 second(s).
  2023-03-27 09:31:37,830 INFO [org.apache.hadoop.metrics2.impl.MetricsSystemImpl] - JobTracker metrics system started
  2023-03-27 09:31:38,525 WARN [org.apache.hadoop.mapreduce.JobResourceUploader] - Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this.
  2023-03-27 09:31:38,582 WARN [org.apache.hadoop.mapreduce.JobResourceUploader] - No job jar file set.  User classes may not be found. See Job or Job#setJar(String).
  2023-03-27 09:31:38,596 INFO [org.apache.hadoop.mapreduce.lib.input.FileInputFormat] - Total input files to process : 1
  2023-03-27 09:31:38,841 INFO [org.apache.hadoop.mapreduce.JobSubmitter] - number of splits:1
  2023-03-27 09:31:38,997 INFO [org.apache.hadoop.mapreduce.JobSubmitter] - Submitting tokens for job: job_local190721450_0001
  2023-03-27 09:31:38,998 INFO [org.apache.hadoop.mapreduce.JobSubmitter] - Executing with tokens: []
  2023-03-27 09:31:39,139 INFO [org.apache.hadoop.mapreduce.Job] - The url to track the job: http://localhost:8080/
  2023-03-27 09:31:39,140 INFO [org.apache.hadoop.mapreduce.Job] - Running job: job_local190721450_0001
  2023-03-27 09:31:39,140 INFO [org.apache.hadoop.mapred.LocalJobRunner] - OutputCommitter set in config null
  2023-03-27 09:31:39,143 INFO [org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter] - File Output Committer Algorithm version is 2
  2023-03-27 09:31:39,143 INFO [org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter] - FileOutputCommitter skip cleanup _temporary folders under output directory:false, ignore cleanup failures: false
  2023-03-27 09:31:39,143 INFO [org.apache.hadoop.mapred.LocalJobRunner] - OutputCommitter is org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter
  2023-03-27 09:31:39,242 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Waiting for map tasks
  2023-03-27 09:31:39,243 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Starting task: attempt_local190721450_0001_m_000000_0
  2023-03-27 09:31:39,251 INFO [org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter] - File Output Committer Algorithm version is 2
  2023-03-27 09:31:39,251 INFO [org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter] - FileOutputCommitter skip cleanup _temporary folders under output directory:false, ignore cleanup failures: false
  2023-03-27 09:31:39,255 INFO [org.apache.hadoop.yarn.util.ProcfsBasedProcessTree] - ProcfsBasedProcessTree currently is supported only on Linux.
  2023-03-27 09:31:39,282 INFO [org.apache.hadoop.mapred.Task] -  Using ResourceCalculatorProcessTree : org.apache.hadoop.yarn.util.WindowsBasedProcessTree@767a27d0
  2023-03-27 09:31:39,287 INFO [org.apache.hadoop.mapred.MapTask] - Processing split: file:/D:/bigData/hadoopInput/inputflow/phone_data.txt:0+1178
  2023-03-27 09:31:39,312 INFO [org.apache.hadoop.mapred.MapTask] - (EQUATOR) 0 kvi 26214396(104857584)
  2023-03-27 09:31:39,312 INFO [org.apache.hadoop.mapred.MapTask] - mapreduce.task.io.sort.mb: 100
  2023-03-27 09:31:39,312 INFO [org.apache.hadoop.mapred.MapTask] - soft limit at 83886080
  2023-03-27 09:31:39,312 INFO [org.apache.hadoop.mapred.MapTask] - bufstart = 0; bufvoid = 104857600
  2023-03-27 09:31:39,312 INFO [org.apache.hadoop.mapred.MapTask] - kvstart = 26214396; length = 6553600
  2023-03-27 09:31:39,314 INFO [org.apache.hadoop.mapred.MapTask] - Map output collector class = org.apache.hadoop.mapred.MapTask$MapOutputBuffer
  2023-03-27 09:31:39,316 INFO [org.apache.hadoop.mapred.MapTask] - Starting flush of map output
  2023-03-27 09:31:39,451 INFO [org.apache.hadoop.mapred.LocalJobRunner] - map task executor complete.
  2023-03-27 09:31:39,452 WARN [org.apache.hadoop.mapred.LocalJobRunner] - job_local190721450_0001
  java.lang.Exception: java.lang.NumberFormatException: For input string: "192.196.100.1"
	at org.apache.hadoop.mapred.LocalJobRunner$Job.runTasks(LocalJobRunner.java:492)
	at org.apache.hadoop.mapred.LocalJobRunner$Job.run(LocalJobRunner.java:552)
Caused by: java.lang.NumberFormatException: For input string: "192.196.100.1"
	at java.lang.NumberFormatException.forInputString(NumberFormatException.java:65)
	at java.lang.Long.parseLong(Long.java:589)
	at java.lang.Long.parseLong(Long.java:631)
	at com.atguigu.mapreduce.partitionerandwritableComparable.FlowMapper.map(FlowMapper.java:24)
	at com.atguigu.mapreduce.partitionerandwritableComparable.FlowMapper.map(FlowMapper.java:9)
	at org.apache.hadoop.mapreduce.Mapper.run(Mapper.java:146)
	at org.apache.hadoop.mapred.MapTask.runNewMapper(MapTask.java:799)
	at org.apache.hadoop.mapred.MapTask.run(MapTask.java:347)
	at org.apache.hadoop.mapred.LocalJobRunner$Job$MapTaskRunnable.run(LocalJobRunner.java:271)
	at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
	at java.util.concurrent.FutureTask.run(FutureTask.java:266)
	at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
	at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
	at java.lang.Thread.run(Thread.java:748)
2023-03-27 09:31:40,148 INFO [org.apache.hadoop.mapreduce.Job] - Job job_local190721450_0001 running in uber mode : false
  2023-03-27 09:31:40,150 INFO [org.apache.hadoop.mapreduce.Job] -  map 0% reduce 0%
  2023-03-27 09:31:40,152 INFO [org.apache.hadoop.mapreduce.Job] - Job job_local190721450_0001 failed with state FAILED due to: NA
  2023-03-27 09:31:40,159 INFO [org.apache.hadoop.mapreduce.Job] - Counters: 0
  
进程已结束,退出代码1

P103【103_尚硅谷_Hadoop_MapReduce_Combiner概述】07:18

3.3.7 Combiner合并

P104【104_尚硅谷_Hadoop_MapReduce_Combiner案例】12:33

3.3.8 Combiner合并案例实操

需求:对每一个MapTask的输出局部汇总(Combiner)。

package com.atguigu.mapreduce.combiner;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;

public class WordCountCombiner extends Reducer<Text, IntWritable, Text, IntWritable> {
    private IntWritable outV = new IntWritable();

    @Override
    protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
        int sum = 0;
        for (IntWritable value : values) {
            sum += value.get();
        }

        outV.set(sum);

        context.write(key, outV);
    }
}

P105【105_尚硅谷_Hadoop_MapReduce_outputformat概述】03:42

3.4 OutputFormat数据输出

3.4.1 OutputFormat接口实现类

P106【106_尚硅谷_Hadoop_MapReduce_自定义outputformat案例需求分析】04:22

P107【107_尚硅谷_Hadoop_MapReduce_自定义outputformat案例mapper&reducer】04:33

package com.atguigu.mapreduce.outputformat;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;

public class LogMapper extends Mapper<LongWritable, Text, Text, NullWritable> {
    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        //http://www.baidu.com
        //http://www.google.com
        //(http://www.google.com, NullWritable)
        //map阶段不作任何处理
        context.write(value, NullWritable.get());
    }
}
package com.atguigu.mapreduce.outputformat;

import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;

public class LogReducer extends Reducer<Text, NullWritable, Text, NullWritable> {
    @Override
    protected void reduce(Text key, Iterable<NullWritable> values, Context context) throws IOException, InterruptedException {
        // http://www.baidu.com
        // http://www.baidu.com
        // 防止有相同数据,丢数据
        for (NullWritable value : values) {
            context.write(key, NullWritable.get());
        }
    }
}

P108【108_尚硅谷_Hadoop_MapReduce_自定义outputformat案例执行】12:33

P109【109_尚硅谷_Hadoop_MapReduce_MapTask工作机制】03:46

3.5 MapReduce内核源码解析

3.5.1 MapTask工作机制

P110【110_尚硅谷_Hadoop_MapReduce_ReduceTask工作机制&并行度】09:00

3.5.2 ReduceTask工作机制

3.5.3 ReduceTask并行度决定机制

1)设置ReduceTask并行度(个数)

ReduceTask的并行度同样影响整个Job的执行并发度和执行效率,但与MapTask的并发数由切片数决定不同,ReduceTask数量的决定是可以直接手动设置:

// 默认值是1,手动设置为4

job.setNumReduceTasks(4);

2)实验:测试ReduceTask多少合适

(1)实验环境:1个Master节点,16个Slave节点:CPU:8GHZ,内存: 2G

(2)实验结论:

表 改变ReduceTask(数据量为1GB)

MapTask =16

ReduceTask

1

5

10

15

16

20

25

30

45

60

总时间

892

146

110

92

88

100

128

101

145

104

P111【111_尚硅谷_Hadoop_MapReduce_MapTask源码】16:57

P112【112_尚硅谷_Hadoop_MapReduce_ReduceTask源码】15:25

3.5.4 MapTask & ReduceTask源码解析

1)MapTask源码解析流程

2)ReduceTask源码解析流程

P113【113_尚硅谷_Hadoop_MapReduce_ReduceJoin案例需求分析】09:22

3.6 Join应用

3.6.1 Reduce Join

P114【114_尚硅谷_Hadoop_MapReduce_ReduceJoin案例TableBean】07:09

package com.atguigu.mapreduce.reduceJoin;

import org.apache.hadoop.io.Writable;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

public class TableBean implements Writable {
    private String id; //订单id
    private String pid; //商品id
    private int amount; //商品数量
    private String pname;//商品名称
    private String flag; //标记是什么表 order pd

    //空参构造
    public TableBean() {
    }

    public String getId() {
        return id;
    }

    public void setId(String id) {
        this.id = id;
    }

    public String getPid() {
        return pid;
    }

    public void setPid(String pid) {
        this.pid = pid;
    }

    public int getAmount() {
        return amount;
    }

    public void setAmount(int amount) {
        this.amount = amount;
    }

    public String getPname() {
        return pname;
    }

    public void setPname(String pname) {
        this.pname = pname;
    }

    public String getFlag() {
        return flag;
    }

    public void setFlag(String flag) {
        this.flag = flag;
    }

    @Override
    public void write(DataOutput out) throws IOException {
        out.writeUTF(id);
        out.writeUTF(pid);
        out.writeInt(amount);
        out.writeUTF(pname);
        out.writeUTF(flag);
    }

    @Override
    public void readFields(DataInput in) throws IOException {
        this.id = in.readUTF();
        this.pid = in.readUTF();
        this.amount = in.readInt();
        this.pname = in.readUTF();
        this.flag = in.readUTF();
    }

    @Override
    public String toString() {
        // id	pname	amount
        return id + "\t" + pname + "\t" + amount;
    }
}

P115【115_尚硅谷_Hadoop_MapReduce_ReduceJoin案例Mapper】12:34

package com.atguigu.mapreduce.reduceJoin;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;

import java.io.IOException;

public class TableMapper extends Mapper<LongWritable, Text, Text, TableBean> {
    private String fileName;
    private Text outK = new Text();
    private TableBean outV = new TableBean();

    @Override
    protected void setup(Context context) throws IOException, InterruptedException {
        //初始化 order pd
        FileSplit split = (FileSplit) context.getInputSplit();

        fileName = split.getPath().getName();
    }

    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        //1、获取一行
        String line = value.toString();

        //2、判断是哪个文件的
        if (fileName.contains("order")) {// 处理的是订单表
            String[] split = line.split("\t");
            //封装k和v
            outK.set(split[1]);
            outV.setId(split[0]);
            outV.setPid(split[1]);
            outV.setAmount(Integer.parseInt(split[2]));
            outV.setPname("");
            outV.setFlag("order");
        } else {//处理的是商品表
            String[] split = line.split("\t");
            outK.set(split[0]);
            outV.setId("");
            outV.setPid(split[0]);
            outV.setAmount(0);
            outV.setPname(split[1]);
            outV.setFlag("pd");
        }

        //写出
        context.write(outK, outV);
    }
}

P116【116_尚硅谷_Hadoop_MapReduce_ReduceJoin案例完成】12:27

package com.atguigu.mapreduce.reduceJoin;

import org.apache.commons.beanutils.BeanUtils;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;
import java.lang.reflect.InvocationTargetException;
import java.util.ArrayList;

public class TableReducer extends Reducer<Text, TableBean, TableBean, NullWritable> {
    @Override
    protected void reduce(Text key, Iterable<TableBean> values, Context context) throws IOException, InterruptedException {
//        01 	1001	1   order
//        01 	1004	4   order
//        01	小米   	     pd
        //准备初始化集合
        ArrayList<TableBean> orderBeans = new ArrayList<>();
        TableBean pdBean = new TableBean();

        //循环遍历
        for (TableBean value : values) {
            if ("order".equals(value.getFlag())) {//订单表
                TableBean tmptableBean = new TableBean();
                try {
                    BeanUtils.copyProperties(tmptableBean, value);
                } catch (IllegalAccessException e) {
                    e.printStackTrace();
                } catch (InvocationTargetException e) {
                    e.printStackTrace();
                }
                orderBeans.add(tmptableBean);
            } else {//商品表
                try {
                    BeanUtils.copyProperties(pdBean, value);
                } catch (IllegalAccessException e) {
                    e.printStackTrace();
                } catch (InvocationTargetException e) {
                    e.printStackTrace();
                }
            }
        }

        //循环遍历orderBeans,赋值pdname
        for (TableBean orderBean : orderBeans) {
            orderBean.setPname(pdBean.getPname());
            context.write(orderBean, NullWritable.get());
        }
    }
}

P117【117_尚硅谷_Hadoop_MapReduce_ReduceJoin案例debug】04:15

P118【118_尚硅谷_Hadoop_MapReduce_MapJoin案例需求分析】06:57

3.6.3 Map Join

1)使用场景

Map Join适用于一张表十分小、一张表很大的场景。

2)优点

思考:在Reduce端处理过多的表,非常容易产生数据倾斜。怎么办?

Map端缓存多张表,提前处理业务逻辑,这样增加Map端业务,减少Reduce端数据的压力,尽可能的减少数据倾斜。

3)具体办法:采用DistributedCache

        1)在Mappersetup阶段,将文件读取到缓存集合中。

        2)在Driver驱动类中加载缓存。

//缓存普通文件到Task运行节点。

job.addCacheFile(new URI("file:///e:/cache/pd.txt"));

//如果是集群运行,需要设置HDFS路径

job.addCacheFile(new URI("hdfs://hadoop102:8020/cache/pd.txt"));

3.6.4 Map Join案例实操

P119【119_尚硅谷_Hadoop_MapReduce_MapJoin案例完成】13:11

package com.atguigu.mapreduce.mapjoin;

import org.apache.commons.lang.StringUtils;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.URI;
import java.util.HashMap;

public class MapJoinMapper extends Mapper<LongWritable, Text, Text, NullWritable> {
    private HashMap<String, String> pdMap = new HashMap<>();
    private Text outK = new Text();

    @Override
    protected void setup(Context context) throws IOException, InterruptedException {
        //获取缓存的文件,并把文件内容封装到集合,pd.txt
        URI[] cacheFiles = context.getCacheFiles();

        FileSystem fs = FileSystem.get(context.getConfiguration());
        FSDataInputStream fis = fs.open(new Path(cacheFiles[0]));

        //从流中读取数据
        BufferedReader reader = new BufferedReader(new InputStreamReader(fis, "UTF-8"));

        String line;
        while (StringUtils.isNotEmpty(line = reader.readLine())) {
            //切割
            String[] fields = line.split("\t");
            //赋值
            pdMap.put(fields[0], fields[1]);
        }

        //关流
        IOUtils.closeStream(reader);
    }

    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        //处理order.txt
        String line = value.toString();

        String[] fields = line.split("\t");

        //获取pid
        String pname = pdMap.get(fields[1]);

        //获取订单id和订单数量
        //封装
        outK.set(fields[0] + "\t" + pname + "\t" + fields[2]);

        context.write(outK, NullWritable.get());
    }
}
package com.atguigu.mapreduce.mapjoin;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;
import java.net.URI;
import java.net.URISyntaxException;

public class MapJoinDriver {
    public static void main(String[] args) throws IOException, URISyntaxException, ClassNotFoundException, InterruptedException {
        // 1 获取job信息
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf);
        // 2 设置加载jar包路径
        job.setJarByClass(MapJoinDriver.class);
        // 3 关联mapper
        job.setMapperClass(MapJoinMapper.class);
        // 4 设置Map输出KV类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(NullWritable.class);
        // 5 设置最终输出KV类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(NullWritable.class);

        // 加载缓存数据
        job.addCacheFile(new URI("file:///D:/bigData/hadoopInput/tablecache/pd.txt"));
        // Map端Join的逻辑不需要Reduce阶段,设置reduceTask数量为0
        job.setNumReduceTasks(0);

        // 6 设置输入输出路径
        FileInputFormat.setInputPaths(job, new Path("D:\\bigData\\hadoopInput\\inputtable2\\order.txt"));
        FileOutputFormat.setOutputPath(job, new Path("D:\\bigData\\hadoopInput\\inputtable2\\output111"));
        // 7 提交
        boolean b = job.waitForCompletion(true);
        System.exit(b ? 0 : 1);
    }
}

P120【120_尚硅谷_Hadoop_MapReduce_MapJoin案例debug】02:49

P121【121_尚硅谷_Hadoop_MapReduce_ETL数据清洗案例】15:11

ETL,是英文Extract-Transform-Load的缩写,用来描述将数据从来源端经过抽取(Extract)、转换(Transform)、加载(Load)至目的端的过程。ETL一词较常用在数据仓库,但其对象并不限于数据仓库。

在运行核心业务MapReduce程序之前,往往要先对数据进行清洗,清理掉不符合用户要求的数据。清理的过程往往只需要运行Mapper程序,不需要运行Reduce程序。

运行截图

ETL清洗规则

 

P122【122_尚硅谷_Hadoop_MapReduce_MapReduce开发总结】10:51

一、Hadoop入门
    1、常用端口号
        hadoop3.x 
            HDFS NameNode 内部通常端口:8020/9000/9820
            HDFS NameNode 对用户的查询端口:9870
            Yarn查看任务运行情况的:8088
            历史服务器:19888
        hadoop2.x 
            HDFS NameNode 内部通常端口:8020/9000
            HDFS NameNode 对用户的查询端口:50070
            Yarn查看任务运行情况的:8088
            历史服务器:19888
    2、常用的配置文件
        3.x core-site.xml  hdfs-site.xml  yarn-site.xml  mapred-site.xml workers
        2.x core-site.xml  hdfs-site.xml  yarn-site.xml  mapred-site.xml slaves

二、HDFS
    1、HDFS文件块大小(面试重点)
        硬盘读写速度
        在企业中  一般128m(中小公司)   256m (大公司)
    2、HDFS的Shell操作(开发重点)
    3、HDFS的读写流程(面试重点)

三、MapReduce
    1、InputFormat
        1)默认的是TextInputformat,输入kv,key:偏移量、v:一行内容
        2)处理小文件CombineTextInputFormat,把多个文件合并到一起统一切片
    2、Mapper 
        setup():初始化;map():用户的业务逻辑;clearup():关闭资源;
    3、分区
        默认分区HashPartitioner ,默认按照key的hash值%numreducetask个数
        自定义分区
    4、排序
        1)部分排序,每个输出的文件内部有序。
        2)全排序:一个reduce,对所有数据大排序。
        3)二次排序:自定义排序范畴,实现writableCompare接口,重写compareTo方法
            总流量倒序,按照上行流量,正序
    5、Combiner 
        前提:不影响最终的业务逻辑(求和没问题,求平均值)
        提前聚合map => 解决数据倾斜的一个方法
    6、Reducer
        用户的业务逻辑;
        setup():初始化;reduce():用户的业务逻辑;clearup():关闭资源;
    7、OutputFormat
        1)默认TextOutputFormat,按行输出到文件
        2)自定义

四、Yarn

P123【123_尚硅谷_Hadoop_MapReduce_压缩概述】16:05

第4章 Hadoop数据压缩

4.1 概述

1)压缩的好处和坏处

压缩的优点:以减少磁盘IO、减少磁盘存储空间。

压缩的缺点:增加CPU开销。

2)压缩原则

(1)运算密集型的Job,少用压缩

(2)IO密集型的Job,多用压缩

P124【124_尚硅谷_Hadoop_MapReduce_压缩案例实操】10:22

4.4 压缩参数配置

package com.atguigu.mapreduce.yasuo;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.compress.*;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;

public class WordCountDriver {
    public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
        // 1 获取job
        Configuration conf = new Configuration();

        // 开启map端输出压缩
        conf.setBoolean("mapreduce.map.output.compress", true);

        // 设置map端输出压缩方式,BZip2Codec、SnappyCodec
        conf.setClass("mapreduce.map.output.compress.codec", BZip2Codec.class, CompressionCodec.class);

        Job job = Job.getInstance(conf);

        // 2 设置jar包路径
        job.setJarByClass(WordCountDriver.class);

        // 3 关联mapper和reducer
        job.setMapperClass(WordCountMapper.class);
        job.setReducerClass(WordCountReducer.class);

        // 4 设置map输出的kv类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(IntWritable.class);

        // 5 设置最终输出的kV类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);

        // 6 设置输入路径和输出路径
        FileInputFormat.setInputPaths(job, new Path("D:\\bigData\\hadoopInput\\inputword\\hello.txt"));
        FileOutputFormat.setOutputPath(job, new Path("D:\\bigData\\hadoopInput\\inputword\\output777"));

        // 设置reduce端输出压缩开启
        FileOutputFormat.setCompressOutput(job, true);

        // 设置压缩的方式
//        FileOutputFormat.setOutputCompressorClass(job, BZip2Codec.class);
        FileOutputFormat.setOutputCompressorClass(job, GzipCodec.class);
//        FileOutputFormat.setOutputCompressorClass(job, DefaultCodec.class);

        // 7 提交job
        boolean result = job.waitForCompletion(true);
        System.exit(result ? 0 : 1);
    }
}

http://www.kler.cn/a/3790.html

相关文章:

  • Linux探秘坊-------3.开发工具详解(2)
  • three.js实现裸眼双目平行立体视觉
  • R 语言科研绘图第 20 期 --- 箱线图-配对
  • Qt QML专栏目录结构
  • 大模型GUI系列论文阅读 DAY1:《基于大型语言模型的图形用户界面智能体:综述》
  • 通信协议之数据帧常用校验方法(奇偶校验、CRC校验)
  • 【Linux】 基础IO——文件(中)
  • 计算机视觉知识点(一)——交并比(IoU)及其若干改进
  • python例程:AI智能联系人管理的程序
  • 跟内存有关的笔试题
  • JavaScript中的for in和for of的区别(js的for循环)
  • Vue 实现图片监听鼠标滑轮滚动实现图片缩小放大功能
  • Spring学习流程介绍
  • 跨境电商卖家工具——跨境卫士内容介绍
  • 华为OD机试用java实现 -【最多获得的短信条数】(2023-Q1 新题)
  • 【Linux】计算机网络1
  • 前端布局小案例,分享3个漂亮的卡片组件
  • 【多线程】CAS
  • 最小生成树kruskal-修建公路1
  • 过等保堡垒机选择云堡垒机可以吗?有推荐的吗?
  • linxu学习之进程
  • 第十四届蓝桥杯三月真题刷题训练——第 23 天
  • day1 计算机组成与结构考点汇总
  • 使用Docker 一键部署SpringBoot和SpringCloud项目
  • 软件测试面试题 —— 整理与解析(3)
  • Docker容器高级篇