当前位置: 首页 > article >正文

计算机视觉读书系列(1)——基本知识与深度学习基础

研三即将毕业,后续的工作可能会偏AI方向的计算机视觉方面,因此准备了两条线来巩固计算机视觉基础。

一个是本系列,阅读经典《Deep Learning for Vision System》,做一些总结跑一些例子,也对应本系列文章

二是OpenCV实践系列,根据官方自学OpenCV使用方法,对应"OpenCV-Python自学系列"。

后续准备在实际项目中引入一些目前的大模型的东西,视觉语言模型在传统CV任务上的理解和实践等。


本期主要包括基础知识和深度学习介绍。本篇主要以概念为主

一、计算机视觉通识

1.1 计算机器视觉

        视觉系统传感设备 + 解释设备

1.2 计算机视觉的应用

        略

1.3 计算集视觉处理流程

        计算机视觉处理流程:输入数据——预处理——特征提取——机器学习模型。

        以图像分类算法为例,其流程为:从视觉设备输入一张图像、对图像进行预处理(标准化、重采样、模糊、旋转、颜色变换等等)、特性提取(输出为特征向量)、将特征喂到分类模型中、输出概率(该概率代表输入相片是该类别的概率)

1.4 图像输入

        图像坐标系:原点为最左上角,横着为x,向右为正;竖着为y,向下为正。(注意,在代码张对图像数据,也即矩阵,进行索引时,仍然按照直观上的行列进行索引)。

        图像映射:图像时多层矩阵的组合,每个矩阵中的元素值可看作该点坐标的映射,也即z=f(x,y),z表示坐标为(x,y)的像素值。

        通道:通常情况下,灰度图像为单通道,取值范围0-255,0为黑色,255为白色。彩色图像由三通道组成,R(红色)G(绿色) B(蓝色)。

1.5 图像预处理

        预处理一:将图像由彩色转化为灰度降低计算复杂性。对于那些颜色不是很重要的特征而言,可使用该方法。

        预处理二:重采样固定模型输入尺寸。

        预处理三:数据增强。

        等等。。。

        理论:没有一个方法或一个策略能适合于所有的任务。

1.6 特征提取

        特征定义:

        在机器学习过程中,我们希望将原始数据转换为特征向量(一维向量,能简单表示整个类别),再将特征向量展示于我们的学习算法

        如何选择一个好的特征(如何提取出好的特征)?

        传统特征提取和DL的区别:

二、深度学习基础

 2.1 理解感知机

        感知机的构成主要包括以下几个方面:输入向量、权重向量、神经函数、输出。如图

        感知机如何进行学习:感知机通过测试和误差从他的错误中进行学习。

2.2 多层感知机

        单层的感知机能力有限(线性问题),无法解决复杂情况的问题。因此使用多层神经元的感知机,也即多层感知机。关于多层感知机的概念需要清楚的是:

       隐含层的数量:输入层于输出层之间的网络被称为隐含层,隐含层越多其模型拟合能力越强,但容易过拟合。 

        激活函数:在某个神经元进行加权求和后进行映射操作,是神经网络具备非线性拟合能力的关键。

        误差函数:用于衡量模型的预测结果和真实结果之间差距的函数。

        优化器:基于模型现有误差对模型进行调整的优化算法。

        Batch-Size:采用MiniBatch方式进行训练的情况下,每个批次的包含样本的多少。

        训练轮数:整个训练进行的轮次数。

        学习率:(优化过程中)学习速度的控制。

2.3 激活函数

       激活函数的目的:往神经网络中引入非线性。

       线性激活函数:

        步型函数:

        Sigmoid函数:将无限连续的变量转移到简单的0-1之间的概率。广泛用于分类中。

        softmax函数:对Sigmoid函数的泛化,Sigmoid只能处理单类问题,而sigmoid能处理多类型分类中的概率计算问题。

        tanh函数:这个函数在隐含层中表现往往比sigmoid函数更好,因为使用tanh会使得数据的均值更接近于0而不是sigmoid的0.5,使得后续的训练更加简单。

        ReLU函数:ReLU函数被认为是目前最优秀的(state-of-the-art)的激活函数。

        Leaky ReLU函数:虽然用得不多,但通常略优于ReLU,主要是在小于0是提供了小幅度的导数。

2.4 前馈过程

        神经网络的前馈过程,加权求和(矩阵乘法)——激活函数——加权求和——激活函数...

        其计算过程可表示为:

        表示矩阵乘法可为:

2.5 误差函数

        常用的误差函数主要由两大类,MSE(Mean Square Error)和Cross Entropy Error。

        MSE主要用于回归问题,用于衡量两个向量在空间中的欧式距离的大小。

        交叉熵函数(Cross Entropy Error):量化预测概率和目标概率之间的差距。

         参数描述如下:

2.6 优化算法

        Batch Gradient Descent:逐步的根据梯度信息对误差进行优化。

        梯度:其方向代表了误差下降最快的方向,梯度仅仅提供误差下降的方向信息。

        学习率:决定了迭代速度。

       Batch GD将所有数据放在一个Batch中,进行训练,每一个参数更新都是计算了所有训练数据集后的结果。

        Stochastic Gradient Descent(SGD):在每次参数更新时只随机选择一组样本数据计算误差。

         在实际应用中SGD表现要由于Batch GD。

         Mini-Batch Gradient Descent(MBGD):将数据集按一定的尺寸分割为不同批次,每计算一个批次就进行一次参数更新。

        其余优化算法:Adam、Adagrad、RMSprop等...

2.7 反向传播

        根据链式求导法制对每个参数求偏导,获得梯度,进而计算其参数的改正值。

        对网络中某个参数的求解可如下:

 


相当较为基础,笔记较为简略,欢迎批评交流。

下一期:卷积

共勉。


http://www.kler.cn/a/382783.html

相关文章:

  • 单片机实现模式转换
  • 攻防世界 wtf.sh-150
  • 【Web】0基础学Web—事件对象、事件委托(事件代理)——星级评论案例
  • Linux存储管理之核心秘密(The Core Secret of Linux Storage Management)
  • 使用WPF在C#中制作下载按钮
  • 软件23种设计模式完整版[附Java版示例代码]
  • 【计算机网络】TCP协议面试常考(一)
  • 2024 Web3.0创新大赛在沪正式启动
  • 微服务之间的信息传递---OpenFeign拦截器
  • [OS] Prerequisite Knowledge about xv6
  • 【LeetCode】【算法】155. 最小栈
  • 常用查找算法count_if
  • 基于JavaWeb的宿舍管理系统的设计与实现
  • 【游戏引擎之路】登神长阶(十二)——DirectX11教程:If you‘re going through hell, keep going!
  • 英伟达的cuda和人工智能快车
  • ubuntu 22.04 server 安装 anaconda3
  • 【Zynq FPGA】基于 Zynq FPGA 的雷龙 SD NAND 测试
  • Java 8 Lambda 表达式和函数式接口的底层实现机制详解
  • 【Linux】【守护进程】总结整理
  • 【AI开源项目】FastGPT - 快速部署FastGPT以及使用知识库的两种方式!
  • hive表内外表之间切换
  • Docker 镜像拉不动?自建 Docker Hub 加速站 解决镜像拉取失败
  • 非凸科技助力第49届ICPC亚洲区域赛(成都)成功举办
  • ELK-ELK基本概念_ElasticSearch的配置
  • 立冬:冬日序曲的温柔启幕
  • Renesas R7FA8D1BH (Cortex®-M85) 存储空间介绍