yelp数据集上识别潜在的热门商家
yelp数据集是研究B2C业态的一个很好的数据集,要识别潜在的热门商家是一个多维度的分析过程,涉及用户行为、商家特征和社区结构等多个因素。从yelp数据集里我们可以挖掘到下面信息有助于识别热门商家
用户评分和评论分析
- 评分均值: 商家的平均评分是反映其受欢迎程度的重要指标。较高的平均评分通常意味着顾客满意度高,从而可能成为热门商家。
- 评论数量: 评论数量可以反映商家的活跃度和用户的参与程度。评论数量多的商家更可能受到广泛关注。
用户活跃度
- 用户评分行为: 分析活跃用户(频繁评分的用户)对商家的评分,可以识别出哪些商家在用户群体中更受欢迎。
- 用户影响力: 一些用户的评分会对其他用户的选择产生较大影响(例如,社交媒体影响者)。识别这些高影响力用户对商家的评分可以帮助识别潜在热门商家。
社交网络分析
- 用户与商家的关系网络: 使用图神经网络等算法分析用户与商家之间的关系。商家与许多用户有互动,且用户在网络中有较高影响力的商家,可能会被视为热门商家。
- 社区发现: 通过分析用户和商家之间的关系网络,识别出相似用户群体,进而识别出在这些群体中受欢迎的商家。
多维度评价
- 综合评价: 结合多个指标(如评分、评论数、用户活跃度、地理位置等),使用加权方法或多指标决策模型来综合评估商家的受欢迎程度。
使用的文件
-
yelp_academic_dataset_business.json
:- 包含商家的基本信息,如商家 ID、名称、类别、位置等。
-
yelp_academic_dataset_review.json
:- 包含用户对商家的评论及评分,可以用来分析商家的受欢迎程度和用户的行为。
-
yelp_academic_dataset_user.json
:- 包含用户的基本信息,比如用户 ID、注册时间、评价数量等,可以用来分析用户的活跃度和影响力。
通过图神经网络(GNN)来识别商家的影响力:
先加载必要的库并读取数据文件:
import pandas as pd
import json
# 读取数据
with open('yelp_academic_dataset_business.json', 'r') as f:
businesses = pd.DataFrame([json.loads(line) for line in f])
with open('yelp_academic_dataset_review.json', 'r') as f:
reviews = pd.DataFrame([json.loads(line) for line in f])
with open('yelp_academic_dataset_user.json', 'r') as f:
users = pd.DataFrame([json.loads(line) for line in f])
清洗数据以提取有用的信息:
# 过滤出需要的商家和用户数据
businesses = businesses[['business_id', 'name', 'categories', 'city', 'state', 'review_count', 'stars']]
reviews = reviews[['user_id', 'business_id', 'stars']]
users = users[['user_id', 'review_count', 'average_stars']]
# 处理类别数据
businesses['categories'] = businesses['categories'].str.split(', ').apply(lambda x: x[0] if x else None)
构建商家和用户之间的图,节点为商家和用户,边为用户对商家的评分。
edges = []
for _, row in reviews.iterrows():
if row['user_id'] in node_mapping and row['business_id'] in node_mapping:
edges.append([node_mapping[row['user_id']], node_mapping[row['business_id']]])
edge_index = torch.tensor(edges, dtype=torch.long).t().contiguous()
return node_mapping, edge_index, total_nodes
我们可以通过以下方式计算商家的影响力:
- 用户评分的平均值: 表示商家的受欢迎程度。
- 评论数: 提供商家影响力的直观指标。
business_reviews = reviews.groupby('business_id').agg({
'stars': ['mean', 'count']
}).reset_index()
business_reviews.columns = ['business_id', 'average_rating', 'review_count']
# 合并商家信息和评论信息
merged_data = businesses.merge(business_reviews, on='business_id', how='left')
# 3. 目标变量定义
# 定义热门商家的标准
merged_data['is_popular'] = ((merged_data['average_rating'] > 4.0) &
(merged_data['review_count'] > 10)).astype(int)
使用 GNN 进一步分析商家的影响力 ,可以构建 GNN 模型并训练。以下是 GNN 模型的基本示例,使用 PyTorch Geometric:
class GNNModel(torch.nn.Module):
def __init__(self, num_node_features):
super(GNNModel, self).__init__()
self.conv1 = GCNConv(num_node_features, 64)
self.conv2 = GCNConv(64, 32)
self.conv3 = GCNConv(32, 16)
self.fc = torch.nn.Linear(16, 1)
self.dropout = torch.nn.Dropout(0.3)
def forward(self, x, edge_index):
x = F.relu(self.conv1(x, edge_index))
x = self.dropout(x)
x = F.relu(self.conv2(x, edge_index))
x = self.dropout(x)
x = F.relu(self.conv3(x, edge_index))
x = self.fc(x)
return x
使用模型的输出嵌入来分析商家之间的相似度,识别潜在的热门商家。
print("Making predictions...")
model.eval()
with torch.no_grad():
predictions = torch.sigmoid(model(data.x.to(device), data.edge_index.to(device))).cpu()
# 将预测结果添加到数据框
merged_data['predicted_popularity'] = 0.0
for _, row in merged_data.iterrows():
if row['business_id'] in node_mapping:
idx = node_mapping[row['business_id']]
merged_data.loc[row.name, 'predicted_popularity'] = predictions[idx].item()
# 输出潜在热门商家
potential_hot = merged_data[
(merged_data['predicted_popularity'] > 0.5) &
(merged_data['is_popular'] == 0)
].sort_values('predicted_popularity', ascending=False)
print("\nPotential Hot Businesses:")
print(potential_hot[['name', 'average_rating', 'review_count', 'predicted_popularity']].head())
使用上面定义流程跑一下训练, 报错了
Traceback (most recent call last):
File "/opt/miniconda3/envs/lora/lib/python3.10/site-packages/pandas/core/indexes/base.py", line 3805, in get_loc
return self._engine.get_loc(casted_key)
File "index.pyx", line 167, in pandas._libs.index.IndexEngine.get_loc
File "index.pyx", line 196, in pandas._libs.index.IndexEngine.get_loc
File "pandas/_libs/hashtable_class_helper.pxi", line 7081, in pandas._libs.hashtable.PyObjectHashTable.get_item
File "pandas/_libs/hashtable_class_helper.pxi", line 7089, in pandas._libs.hashtable.PyObjectHashTable.get_item
KeyError: 'review_count'
把print('merged_data', merged_data) 加上再试下
[150346 rows x 16 columns]
Index(['business_id', 'name', 'address', 'city', 'state', 'postal_code',
'latitude', 'longitude', 'stars', 'review_count_x', 'is_open',
'attributes', 'categories', 'hours', 'average_rating',
'review_count_y'],
dtype='object')
review_count
列被重命名为 review_count_x
和 review_count_y
。这通常是因为在合并过程中,两个 DataFrame 中都存在 review_count
列。为了继续进行需要选择合适的列来作为评论数量的依据。选择 review_count_x
或 review_count_y
: 通常,review_count_x
是从 businesses
DataFrame 中来的,而 review_count_y
是从 business_reviews
DataFrame 中来的。
代码修改下
import torch
import pandas as pd
import numpy as np
import torch.nn.functional as F
from torch_geometric.data import Data
from torch_geometric.nn import GCNConv
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
# 1. 数据加载
def load_data():
businesses = pd.read_json('yelp_academic_dataset_business.json', lines=True)
reviews = pd.read_json('yelp_academic_dataset_review.json', lines=True)
users = pd.read_json('yelp_academic_dataset_user.json', lines=True)
return businesses, reviews, users
# 2. 数据预处理
def preprocess_data(businesses, reviews):
# 聚合评论数据
business_reviews = reviews.groupby('business_id').agg({
'stars': ['mean', 'count'],
'useful': 'sum',
'funny': 'sum',
'cool': 'sum'
}).reset_index()
# 修复列名
business_reviews.columns = ['business_id', 'average_rating', 'review_count',
'total_useful', 'total_funny', 'total_cool']
# 合并商家信息
# 删除businesses中的review_count列(如果存在)
if 'review_count' in businesses.columns:
businesses = businesses.drop('review_count', axis=1)
# 合并商家信息
merged_data = businesses.merge(business_reviews, on='business_id', how='left')
# 填充缺失值
merged_data = merged_data.fillna(0)
return merged_data
# 3. 特征工程
def engineer_features(merged_data):
# 确保使用正确的列名创建特征
merged_data['engagement_score'] = (merged_data['total_useful'] +
merged_data['total_funny'] +
merged_data['total_cool']) / (merged_data['review_count'] + 1) # 加1避免除零
# 定义热门商家
merged_data['is_popular'] = ((merged_data['average_rating'] >= 4.0) &
(merged_data['review_count'] >= merged_data['review_count'].quantile(0.75))).astype(
int)
return merged_data
# 4. 图构建
def build_graph(merged_data, reviews):
# 创建节点映射
business_ids = merged_data['business_id'].unique()
user_ids = reviews['user_id'].unique()
# 修改索引映射,确保从0开始
node_mapping = {user_id: i for i, user_id in enumerate(user_ids)}
# 商家节点的索引接续用户节点的索引
business_start_idx = len(user_ids)
node_mapping.update({business_id: i + business_start_idx for i, business_id in enumerate(business_ids)})
# 获取节点总数
total_nodes = len(user_ids) + len(business_ids)
# 创建边
edges = []
for _, row in reviews.iterrows():
if row['user_id'] in node_mapping and row['business_id'] in node_mapping:
edges.append([node_mapping[row['user_id']], node_mapping[row['business_id']]])
edge_index = torch.tensor(edges, dtype=torch.long).t().contiguous()
return node_mapping, edge_index, total_nodes
def prepare_node_features(merged_data, node_mapping, num_user_nodes, total_nodes):
feature_cols = ['average_rating', 'review_count', 'engagement_score']
# 确保所有特征列都是数值类型
for col in feature_cols:
merged_data[col] = merged_data[col].astype(float)
# 标准化特征
scaler = StandardScaler()
merged_data[feature_cols] = scaler.fit_transform(merged_data[feature_cols])
# 创建特征矩阵,使用总节点数
num_features = len(feature_cols)
x = torch.zeros(total_nodes, num_features, dtype=torch.float)
# 用户节点特征(使用平均值)
mean_values = merged_data[feature_cols].mean().values.astype(np.float32)
x[:num_user_nodes] = torch.tensor(mean_values, dtype=torch.float)
# 商家节点特征
for _, row in merged_data.iterrows():
if row['business_id'] in node_mapping:
idx = node_mapping[row['business_id']]
feature_values = row[feature_cols].values.astype(np.float32)
if not np.isfinite(feature_values).all():
print(f"警告: 发现无效值 {feature_values}")
feature_values = np.nan_to_num(feature_values, 0)
x[idx] = torch.tensor(feature_values, dtype=torch.float)
return x
def main():
print("Starting the program...")
# 设置设备
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Using device: {device}")
# 加载数据
print("Loading data...")
businesses, reviews, users = load_data()
# 预处理数据
print("Preprocessing data...")
merged_data = preprocess_data(businesses, reviews)
merged_data = engineer_features(merged_data)
# 构建图
print("Building graph...")
node_mapping, edge_index, total_nodes = build_graph(merged_data, reviews)
num_user_nodes = len(reviews['user_id'].unique())
# 打印节点信息
print(f"Total nodes: {total_nodes}")
print(f"User nodes: {num_user_nodes}")
print(f"Business nodes: {total_nodes - num_user_nodes}")
print(f"Max node index in mapping: {max(node_mapping.values())}")
# 准备特征
print("Preparing node features...")
x = prepare_node_features(merged_data, node_mapping, num_user_nodes, total_nodes)
# 准备标签
print("Preparing labels...")
labels = torch.zeros(total_nodes)
business_mask = torch.zeros(total_nodes, dtype=torch.bool)
for _, row in merged_data.iterrows():
if row['business_id'] in node_mapping:
idx = node_mapping[row['business_id']]
labels[idx] = row['is_popular']
business_mask[idx] = True
# 创建图数据对象
data = Data(x=x, edge_index=edge_index)
# 初始化模型
print("Initializing model...")
model = GNNModel(num_node_features=x.size(1)).to(device)
# 训练模型
print("Training model...")
train_model(model, data, labels, business_mask, device)
# 预测
print("Making predictions...")
model.eval()
with torch.no_grad():
predictions = torch.sigmoid(model(data.x.to(device), data.edge_index.to(device))).cpu()
# 将预测结果添加到数据框
merged_data['predicted_popularity'] = 0.0
for _, row in merged_data.iterrows():
if row['business_id'] in node_mapping:
idx = node_mapping[row['business_id']]
merged_data.loc[row.name, 'predicted_popularity'] = predictions[idx].item()
# 输出潜在热门商家
potential_hot = merged_data[
(merged_data['predicted_popularity'] > 0.5) &
(merged_data['is_popular'] == 0)
].sort_values('predicted_popularity', ascending=False)
print("\nPotential Hot Businesses:")
print(potential_hot[['name', 'average_rating', 'review_count', 'predicted_popularity']].head())
# 6. GNN模型定义
class GNNModel(torch.nn.Module):
def __init__(self, num_node_features):
super(GNNModel, self).__init__()
self.conv1 = GCNConv(num_node_features, 64)
self.conv2 = GCNConv(64, 32)
self.conv3 = GCNConv(32, 16)
self.fc = torch.nn.Linear(16, 1)
self.dropout = torch.nn.Dropout(0.3)
def forward(self, x, edge_index):
x = F.relu(self.conv1(x, edge_index))
x = self.dropout(x)
x = F.relu(self.conv2(x, edge_index))
x = self.dropout(x)
x = F.relu(self.conv3(x, edge_index))
x = self.fc(x)
return x
# 7. 训练函数
def train_model(model, data, labels, business_mask, device, epochs=100):
optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4)
criterion = torch.nn.BCEWithLogitsLoss()
model.train()
for epoch in range(epochs):
optimizer.zero_grad()
out = model(data.x.to(device), data.edge_index.to(device))
loss = criterion(out[business_mask], labels[business_mask].unsqueeze(1).to(device))
loss.backward()
optimizer.step()
print(f'Epoch [{epoch + 1}/{epochs}], Loss: {loss.item():.4f}')
if __name__ == "__main__":
main()
开始正式训练,先按照epoch=100做迭代训练测试,loss向收敛方向滑动
识别出热门店铺
Potential Hot Businesses:
name average_rating review_count predicted_popularity
100024 Mother's Restaurant -0.154731 41.821089 0.999941
31033 Royal House 0.207003 40.953749 0.999933
113983 Pat's King of Steaks -0.361171 34.103369 0.999805
64541 Felix's Restaurant & Oyster Bar 0.389155 32.023360 0.999725
42331 Gumbo Shop 0.340872 31.517411 0.999701