当前位置: 首页 > article >正文

yelp数据集上识别潜在的热门商家

yelp数据集是研究B2C业态的一个很好的数据集,要识别潜在的热门商家是一个多维度的分析过程,涉及用户行为、商家特征和社区结构等多个因素。从yelp数据集里我们可以挖掘到下面信息有助于识别热门商家

用户评分和评论分析

  • 评分均值: 商家的平均评分是反映其受欢迎程度的重要指标。较高的平均评分通常意味着顾客满意度高,从而可能成为热门商家。
  • 评论数量: 评论数量可以反映商家的活跃度和用户的参与程度。评论数量多的商家更可能受到广泛关注。

用户活跃度

  • 用户评分行为: 分析活跃用户(频繁评分的用户)对商家的评分,可以识别出哪些商家在用户群体中更受欢迎。
  • 用户影响力: 一些用户的评分会对其他用户的选择产生较大影响(例如,社交媒体影响者)。识别这些高影响力用户对商家的评分可以帮助识别潜在热门商家。

社交网络分析

  • 用户与商家的关系网络: 使用图神经网络等算法分析用户与商家之间的关系。商家与许多用户有互动,且用户在网络中有较高影响力的商家,可能会被视为热门商家。
  • 社区发现: 通过分析用户和商家之间的关系网络,识别出相似用户群体,进而识别出在这些群体中受欢迎的商家。

多维度评价

  • 综合评价: 结合多个指标(如评分、评论数、用户活跃度、地理位置等),使用加权方法或多指标决策模型来综合评估商家的受欢迎程度。

使用的文件

  1. yelp_academic_dataset_business.json:

    • 包含商家的基本信息,如商家 ID、名称、类别、位置等。
  2. yelp_academic_dataset_review.json:

    • 包含用户对商家的评论及评分,可以用来分析商家的受欢迎程度和用户的行为。
  3. yelp_academic_dataset_user.json:

    • 包含用户的基本信息,比如用户 ID、注册时间、评价数量等,可以用来分析用户的活跃度和影响力。

通过图神经网络(GNN)来识别商家的影响力:

先加载必要的库并读取数据文件:

import pandas as pd
import json

# 读取数据
with open('yelp_academic_dataset_business.json', 'r') as f:
    businesses = pd.DataFrame([json.loads(line) for line in f])

with open('yelp_academic_dataset_review.json', 'r') as f:
    reviews = pd.DataFrame([json.loads(line) for line in f])

with open('yelp_academic_dataset_user.json', 'r') as f:
    users = pd.DataFrame([json.loads(line) for line in f])

清洗数据以提取有用的信息:

# 过滤出需要的商家和用户数据
businesses = businesses[['business_id', 'name', 'categories', 'city', 'state', 'review_count', 'stars']]
reviews = reviews[['user_id', 'business_id', 'stars']]
users = users[['user_id', 'review_count', 'average_stars']]

# 处理类别数据
businesses['categories'] = businesses['categories'].str.split(', ').apply(lambda x: x[0] if x else None)

构建商家和用户之间的图,节点为商家和用户,边为用户对商家的评分。

    edges = []
    for _, row in reviews.iterrows():
        if row['user_id'] in node_mapping and row['business_id'] in node_mapping:
            edges.append([node_mapping[row['user_id']], node_mapping[row['business_id']]])

    edge_index = torch.tensor(edges, dtype=torch.long).t().contiguous()

    return node_mapping, edge_index, total_nodes

我们可以通过以下方式计算商家的影响力:

  • 用户评分的平均值: 表示商家的受欢迎程度。
  • 评论数: 提供商家影响力的直观指标。
business_reviews = reviews.groupby('business_id').agg({
    'stars': ['mean', 'count']
}).reset_index()
business_reviews.columns = ['business_id', 'average_rating', 'review_count']

# 合并商家信息和评论信息
merged_data = businesses.merge(business_reviews, on='business_id', how='left')

# 3. 目标变量定义
# 定义热门商家的标准
merged_data['is_popular'] = ((merged_data['average_rating'] > 4.0) &
                             (merged_data['review_count'] > 10)).astype(int)

使用 GNN 进一步分析商家的影响力 ,可以构建 GNN 模型并训练。以下是 GNN 模型的基本示例,使用 PyTorch Geometric:

class GNNModel(torch.nn.Module):
    def __init__(self, num_node_features):
        super(GNNModel, self).__init__()
        self.conv1 = GCNConv(num_node_features, 64)
        self.conv2 = GCNConv(64, 32)
        self.conv3 = GCNConv(32, 16)
        self.fc = torch.nn.Linear(16, 1)
        self.dropout = torch.nn.Dropout(0.3)

    def forward(self, x, edge_index):
        x = F.relu(self.conv1(x, edge_index))
        x = self.dropout(x)
        x = F.relu(self.conv2(x, edge_index))
        x = self.dropout(x)
        x = F.relu(self.conv3(x, edge_index))
        x = self.fc(x)
        return x

使用模型的输出嵌入来分析商家之间的相似度,识别潜在的热门商家。

print("Making predictions...")
    model.eval()
    with torch.no_grad():
        predictions = torch.sigmoid(model(data.x.to(device), data.edge_index.to(device))).cpu()

    # 将预测结果添加到数据框
    merged_data['predicted_popularity'] = 0.0
    for _, row in merged_data.iterrows():
        if row['business_id'] in node_mapping:
            idx = node_mapping[row['business_id']]
            merged_data.loc[row.name, 'predicted_popularity'] = predictions[idx].item()

    # 输出潜在热门商家
    potential_hot = merged_data[
        (merged_data['predicted_popularity'] > 0.5) &
        (merged_data['is_popular'] == 0)
        ].sort_values('predicted_popularity', ascending=False)

    print("\nPotential Hot Businesses:")
    print(potential_hot[['name', 'average_rating', 'review_count', 'predicted_popularity']].head())

使用上面定义流程跑一下训练, 报错了

Traceback (most recent call last):
  File "/opt/miniconda3/envs/lora/lib/python3.10/site-packages/pandas/core/indexes/base.py", line 3805, in get_loc
    return self._engine.get_loc(casted_key)
  File "index.pyx", line 167, in pandas._libs.index.IndexEngine.get_loc
  File "index.pyx", line 196, in pandas._libs.index.IndexEngine.get_loc
  File "pandas/_libs/hashtable_class_helper.pxi", line 7081, in pandas._libs.hashtable.PyObjectHashTable.get_item
  File "pandas/_libs/hashtable_class_helper.pxi", line 7089, in pandas._libs.hashtable.PyObjectHashTable.get_item
KeyError: 'review_count'
 

把print('merged_data', merged_data) 加上再试下

[150346 rows x 16 columns]
Index(['business_id', 'name', 'address', 'city', 'state', 'postal_code',
       'latitude', 'longitude', 'stars', 'review_count_x', 'is_open',
       'attributes', 'categories', 'hours', 'average_rating',
       'review_count_y'],
      dtype='object') 

review_count 列被重命名为 review_count_xreview_count_y。这通常是因为在合并过程中,两个 DataFrame 中都存在 review_count 列。为了继续进行需要选择合适的列来作为评论数量的依据。选择 review_count_xreview_count_y: 通常,review_count_x 是从 businesses DataFrame 中来的,而 review_count_y 是从 business_reviews DataFrame 中来的。

代码修改下

import torch
import pandas as pd
import numpy as np
import torch.nn.functional as F
from torch_geometric.data import Data
from torch_geometric.nn import GCNConv
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split


# 1. 数据加载
def load_data():
    businesses = pd.read_json('yelp_academic_dataset_business.json', lines=True)
    reviews = pd.read_json('yelp_academic_dataset_review.json', lines=True)
    users = pd.read_json('yelp_academic_dataset_user.json', lines=True)
    return businesses, reviews, users


# 2. 数据预处理
def preprocess_data(businesses, reviews):
    # 聚合评论数据
    business_reviews = reviews.groupby('business_id').agg({
        'stars': ['mean', 'count'],
        'useful': 'sum',
        'funny': 'sum',
        'cool': 'sum'
    }).reset_index()

    # 修复列名
    business_reviews.columns = ['business_id', 'average_rating', 'review_count',
                                'total_useful', 'total_funny', 'total_cool']

    # 合并商家信息
    # 删除businesses中的review_count列(如果存在)
    if 'review_count' in businesses.columns:
        businesses = businesses.drop('review_count', axis=1)

    # 合并商家信息
    merged_data = businesses.merge(business_reviews, on='business_id', how='left')

    # 填充缺失值
    merged_data = merged_data.fillna(0)

    return merged_data


# 3. 特征工程
def engineer_features(merged_data):
    # 确保使用正确的列名创建特征
    merged_data['engagement_score'] = (merged_data['total_useful'] +
                                       merged_data['total_funny'] +
                                       merged_data['total_cool']) / (merged_data['review_count'] + 1)  # 加1避免除零

    # 定义热门商家
    merged_data['is_popular'] = ((merged_data['average_rating'] >= 4.0) &
                                 (merged_data['review_count'] >= merged_data['review_count'].quantile(0.75))).astype(
        int)

    return merged_data


# 4. 图构建
def build_graph(merged_data, reviews):
    # 创建节点映射
    business_ids = merged_data['business_id'].unique()
    user_ids = reviews['user_id'].unique()

    # 修改索引映射,确保从0开始
    node_mapping = {user_id: i for i, user_id in enumerate(user_ids)}
    # 商家节点的索引接续用户节点的索引
    business_start_idx = len(user_ids)
    node_mapping.update({business_id: i + business_start_idx for i, business_id in enumerate(business_ids)})

    # 获取节点总数
    total_nodes = len(user_ids) + len(business_ids)

    # 创建边
    edges = []
    for _, row in reviews.iterrows():
        if row['user_id'] in node_mapping and row['business_id'] in node_mapping:
            edges.append([node_mapping[row['user_id']], node_mapping[row['business_id']]])

    edge_index = torch.tensor(edges, dtype=torch.long).t().contiguous()

    return node_mapping, edge_index, total_nodes


def prepare_node_features(merged_data, node_mapping, num_user_nodes, total_nodes):
    feature_cols = ['average_rating', 'review_count', 'engagement_score']

    # 确保所有特征列都是数值类型
    for col in feature_cols:
        merged_data[col] = merged_data[col].astype(float)

    # 标准化特征
    scaler = StandardScaler()
    merged_data[feature_cols] = scaler.fit_transform(merged_data[feature_cols])

    # 创建特征矩阵,使用总节点数
    num_features = len(feature_cols)
    x = torch.zeros(total_nodes, num_features, dtype=torch.float)

    # 用户节点特征(使用平均值)
    mean_values = merged_data[feature_cols].mean().values.astype(np.float32)
    x[:num_user_nodes] = torch.tensor(mean_values, dtype=torch.float)

    # 商家节点特征
    for _, row in merged_data.iterrows():
        if row['business_id'] in node_mapping:
            idx = node_mapping[row['business_id']]
            feature_values = row[feature_cols].values.astype(np.float32)
            if not np.isfinite(feature_values).all():
                print(f"警告: 发现无效值 {feature_values}")
                feature_values = np.nan_to_num(feature_values, 0)
            x[idx] = torch.tensor(feature_values, dtype=torch.float)

    return x


def main():
    print("Starting the program...")

    # 设置设备
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    print(f"Using device: {device}")

    # 加载数据
    print("Loading data...")
    businesses, reviews, users = load_data()

    # 预处理数据
    print("Preprocessing data...")
    merged_data = preprocess_data(businesses, reviews)
    merged_data = engineer_features(merged_data)

    # 构建图
    print("Building graph...")
    node_mapping, edge_index, total_nodes = build_graph(merged_data, reviews)
    num_user_nodes = len(reviews['user_id'].unique())

    # 打印节点信息
    print(f"Total nodes: {total_nodes}")
    print(f"User nodes: {num_user_nodes}")
    print(f"Business nodes: {total_nodes - num_user_nodes}")
    print(f"Max node index in mapping: {max(node_mapping.values())}")

    # 准备特征
    print("Preparing node features...")
    x = prepare_node_features(merged_data, node_mapping, num_user_nodes, total_nodes)

    # 准备标签
    print("Preparing labels...")
    labels = torch.zeros(total_nodes)
    business_mask = torch.zeros(total_nodes, dtype=torch.bool)

    for _, row in merged_data.iterrows():
        if row['business_id'] in node_mapping:
            idx = node_mapping[row['business_id']]
            labels[idx] = row['is_popular']
            business_mask[idx] = True

    # 创建图数据对象
    data = Data(x=x, edge_index=edge_index)

    # 初始化模型
    print("Initializing model...")
    model = GNNModel(num_node_features=x.size(1)).to(device)

    # 训练模型
    print("Training model...")
    train_model(model, data, labels, business_mask, device)

    # 预测
    print("Making predictions...")
    model.eval()
    with torch.no_grad():
        predictions = torch.sigmoid(model(data.x.to(device), data.edge_index.to(device))).cpu()

    # 将预测结果添加到数据框
    merged_data['predicted_popularity'] = 0.0
    for _, row in merged_data.iterrows():
        if row['business_id'] in node_mapping:
            idx = node_mapping[row['business_id']]
            merged_data.loc[row.name, 'predicted_popularity'] = predictions[idx].item()

    # 输出潜在热门商家
    potential_hot = merged_data[
        (merged_data['predicted_popularity'] > 0.5) &
        (merged_data['is_popular'] == 0)
        ].sort_values('predicted_popularity', ascending=False)

    print("\nPotential Hot Businesses:")
    print(potential_hot[['name', 'average_rating', 'review_count', 'predicted_popularity']].head())

# 6. GNN模型定义
class GNNModel(torch.nn.Module):
    def __init__(self, num_node_features):
        super(GNNModel, self).__init__()
        self.conv1 = GCNConv(num_node_features, 64)
        self.conv2 = GCNConv(64, 32)
        self.conv3 = GCNConv(32, 16)
        self.fc = torch.nn.Linear(16, 1)
        self.dropout = torch.nn.Dropout(0.3)

    def forward(self, x, edge_index):
        x = F.relu(self.conv1(x, edge_index))
        x = self.dropout(x)
        x = F.relu(self.conv2(x, edge_index))
        x = self.dropout(x)
        x = F.relu(self.conv3(x, edge_index))
        x = self.fc(x)
        return x


# 7. 训练函数
def train_model(model, data, labels, business_mask, device, epochs=100):
    optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4)
    criterion = torch.nn.BCEWithLogitsLoss()

    model.train()
    for epoch in range(epochs):
        optimizer.zero_grad()
        out = model(data.x.to(device), data.edge_index.to(device))
        loss = criterion(out[business_mask], labels[business_mask].unsqueeze(1).to(device))
        loss.backward()
        optimizer.step()
        print(f'Epoch [{epoch + 1}/{epochs}], Loss: {loss.item():.4f}')



if __name__ == "__main__":
    main()

开始正式训练,先按照epoch=100做迭代训练测试,loss向收敛方向滑动

识别出热门店铺

Potential Hot Businesses:
                                   name  average_rating  review_count  predicted_popularity
100024              Mother's Restaurant       -0.154731     41.821089              0.999941
31033                       Royal House        0.207003     40.953749              0.999933
113983             Pat's King of Steaks       -0.361171     34.103369              0.999805
64541   Felix's Restaurant & Oyster Bar        0.389155     32.023360              0.999725
42331                        Gumbo Shop        0.340872     31.517411              0.999701


http://www.kler.cn/a/383193.html

相关文章:

  • Python 在PDF中绘制形状(线条、矩形、椭圆形等)
  • Python中 yield的作用
  • WPF 中 NavigationWindow 与 Page 的继承关系解析
  • 【网络】自定义协议——序列化和反序列化
  • SQL进阶技巧:如何计算复合增长率?
  • MySQL基础-单表查询
  • 机器学习—前向传播的一般实现
  • 爬虫入门urllib 和 request(二)
  • Backend - Python 爬取网页数据并保存在Excel文件中
  • 【React】JSX规则
  • 产品经理必备秘籍:打造有效的产品 Roadmap
  • 原生鸿蒙应用市场:赋能开发者全生命周期服务体验
  • GAN的基本原理
  • Linux学习笔记之vim入门
  • 【数据结构】二叉树——层序遍历
  • HTML5+css3(伪类,动态伪类,结构伪类,否定伪类,UI伪类,语言伪类,link,hover,active,visited,focus)
  • 网络优化如何利用改IP软件解除地域限制
  • VBA02-初识宏——EXCEL录像机
  • Windows核心编程笔记——DLL基础
  • 【AI视频换脸整合包及教程】AI换脸新星:Rope——让换脸变得如此简单
  • LeetCode题练习与总结:O(1) 时间插入、删除和获取随机元素 - 允许重复--381
  • Air780E基于LuatOS编程开发
  • web实操3——servlet
  • 短剧APP系统开发,数字化微短剧时代
  • SpringBoot框架学习总结 及 整合 JDBC Mybatis-plus JPA Redis 我的学习笔记
  • 《Qwen2-VL》论文精读【下】:发表于2024年10月 Qwen2-VL 迅速崛起 | 性能与GPT-4o和Claude3.5相当