FFmpeg存放压缩后的音视频数据的结构体:AVPacket简介,结构体,函数
如下图的解码流程,AVPacket中的位置
FFmpeg源码中通过AVPacket存储压缩后的音视频数据。它通常由解复用器(demuxers)输出,然后作为输入传递给解码器。
或者从编码器作为输出接收,然后传递给多路复用器(muxers)。
对于视频,它通常包含一个压缩帧;对于音频,它可能包含几个压缩帧。编码器允许输出不包含压缩音视频数据、只包含side data(边数据:例如,在编码结束时更新一些流参数)的空的数据包( empty packets)。
AVPacket 结构体 所在的文件名 libavcodec/packet.h
/*
* AVPacket public API
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef AVCODEC_PACKET_H
#define AVCODEC_PACKET_H
#include <stddef.h>
#include <stdint.h>
#include "libavutil/attributes.h"
#include "libavutil/buffer.h"
#include "libavutil/dict.h"
#include "libavutil/rational.h"
#include "libavutil/version.h"
#include "libavcodec/version_major.h"
/**
* @defgroup lavc_packet AVPacket
*
* Types and functions for working with AVPacket.
* @{
*/
enum AVPacketSideDataType {
/**
* An AV_PKT_DATA_PALETTE side data packet contains exactly AVPALETTE_SIZE
* bytes worth of palette. This side data signals that a new palette is
* present.
*/
AV_PKT_DATA_PALETTE,
/**
* The AV_PKT_DATA_NEW_EXTRADATA is used to notify the codec or the format
* that the extradata buffer was changed and the receiving side should
* act upon it appropriately. The new extradata is embedded in the side
* data buffer and should be immediately used for processing the current
* frame or packet.
*/
AV_PKT_DATA_NEW_EXTRADATA,
/**
* An AV_PKT_DATA_PARAM_CHANGE side data packet is laid out as follows:
* @code
* u32le param_flags
* if (param_flags & AV_SIDE_DATA_PARAM_CHANGE_CHANNEL_COUNT)
* s32le channel_count
* if (param_flags & AV_SIDE_DATA_PARAM_CHANGE_CHANNEL_LAYOUT)
* u64le channel_layout
* if (param_flags & AV_SIDE_DATA_PARAM_CHANGE_SAMPLE_RATE)
* s32le sample_rate
* if (param_flags & AV_SIDE_DATA_PARAM_CHANGE_DIMENSIONS)
* s32le width
* s32le height
* @endcode
*/
AV_PKT_DATA_PARAM_CHANGE,
/**
* An AV_PKT_DATA_H263_MB_INFO side data packet contains a number of
* structures with info about macroblocks relevant to splitting the
* packet into smaller packets on macroblock edges (e.g. as for RFC 2190).
* That is, it does not necessarily contain info about all macroblocks,
* as long as the distance between macroblocks in the info is smaller
* than the target payload size.
* Each MB info structure is 12 bytes, and is laid out as follows:
* @code
* u32le bit offset from the start of the packet
* u8 current quantizer at the start of the macroblock
* u8 GOB number
* u16le macroblock address within the GOB
* u8 horizontal MV predictor
* u8 vertical MV predictor
* u8 horizontal MV predictor for block number 3
* u8 vertical MV predictor for block number 3
* @endcode
*/
AV_PKT_DATA_H263_MB_INFO,
/**
* This side data should be associated with an audio stream and contains
* ReplayGain information in form of the AVReplayGain struct.
*/
AV_PKT_DATA_REPLAYGAIN,
/**
* This side data contains a 3x3 transformation matrix describing an affine
* transformation that needs to be applied to the decoded video frames for
* correct presentation.
*
* See libavutil/display.h for a detailed description of the data.
*/
AV_PKT_DATA_DISPLAYMATRIX,
/**
* This side data should be associated with a video stream and contains
* Stereoscopic 3D information in form of the AVStereo3D struct.
*/
AV_PKT_DATA_STEREO3D,
/**
* This side data should be associated with an audio stream and corresponds
* to enum AVAudioServiceType.
*/
AV_PKT_DATA_AUDIO_SERVICE_TYPE,
/**
* This side data contains quality related information from the encoder.
* @code
* u32le quality factor of the compressed frame. Allowed range is between 1 (good) and FF_LAMBDA_MAX (bad).
* u8 picture type
* u8 error count
* u16 reserved
* u64le[error count] sum of squared differences between encoder in and output
* @endcode
*/
AV_PKT_DATA_QUALITY_STATS,
/**
* This side data contains an integer value representing the stream index
* of a "fallback" track. A fallback track indicates an alternate
* track to use when the current track can not be decoded for some reason.
* e.g. no decoder available for codec.
*/
AV_PKT_DATA_FALLBACK_TRACK,
/**
* This side data corresponds to the AVCPBProperties struct.
*/
AV_PKT_DATA_CPB_PROPERTIES,
/**
* Recommmends skipping the specified number of samples
* @code
* u32le number of samples to skip from start of this packet
* u32le number of samples to skip from end of this packet
* u8 reason for start skip
* u8 reason for end skip (0=padding silence, 1=convergence)
* @endcode
*/
AV_PKT_DATA_SKIP_SAMPLES,
/**
* An AV_PKT_DATA_JP_DUALMONO side data packet indicates that
* the packet may contain "dual mono" audio specific to Japanese DTV
* and if it is true, recommends only the selected channel to be used.
* @code
* u8 selected channels (0=main/left, 1=sub/right, 2=both)
* @endcode
*/
AV_PKT_DATA_JP_DUALMONO,
/**
* A list of zero terminated key/value strings. There is no end marker for
* the list, so it is required to rely on the side data size to stop.
*/
AV_PKT_DATA_STRINGS_METADATA,
/**
* Subtitle event position
* @code
* u32le x1
* u32le y1
* u32le x2
* u32le y2
* @endcode
*/
AV_PKT_DATA_SUBTITLE_POSITION,
/**
* Data found in BlockAdditional element of matroska container. There is
* no end marker for the data, so it is required to rely on the side data
* size to recognize the end. 8 byte id (as found in BlockAddId) followed
* by data.
*/
AV_PKT_DATA_MATROSKA_BLOCKADDITIONAL,
/**
* The optional first identifier line of a WebVTT cue.
*/
AV_PKT_DATA_WEBVTT_IDENTIFIER,
/**
* The optional settings (rendering instructions) that immediately
* follow the timestamp specifier of a WebVTT cue.
*/
AV_PKT_DATA_WEBVTT_SETTINGS,
/**
* A list of zero terminated key/value strings. There is no end marker for
* the list, so it is required to rely on the side data size to stop. This
* side data includes updated metadata which appeared in the stream.
*/
AV_PKT_DATA_METADATA_UPDATE,
/**
* MPEGTS stream ID as uint8_t, this is required to pass the stream ID
* information from the demuxer to the corresponding muxer.
*/
AV_PKT_DATA_MPEGTS_STREAM_ID,
/**
* Mastering display metadata (based on SMPTE-2086:2014). This metadata
* should be associated with a video stream and contains data in the form
* of the AVMasteringDisplayMetadata struct.
*/
AV_PKT_DATA_MASTERING_DISPLAY_METADATA,
/**
* This side data should be associated with a video stream and corresponds
* to the AVSphericalMapping structure.
*/
AV_PKT_DATA_SPHERICAL,
/**
* Content light level (based on CTA-861.3). This metadata should be
* associated with a video stream and contains data in the form of the
* AVContentLightMetadata struct.
*/
AV_PKT_DATA_CONTENT_LIGHT_LEVEL,
/**
* ATSC A53 Part 4 Closed Captions. This metadata should be associated with
* a video stream. A53 CC bitstream is stored as uint8_t in AVPacketSideData.data.
* The number of bytes of CC data is AVPacketSideData.size.
*/
AV_PKT_DATA_A53_CC,
/**
* This side data is encryption initialization data.
* The format is not part of ABI, use av_encryption_init_info_* methods to
* access.
*/
AV_PKT_DATA_ENCRYPTION_INIT_INFO,
/**
* This side data contains encryption info for how to decrypt the packet.
* The format is not part of ABI, use av_encryption_info_* methods to access.
*/
AV_PKT_DATA_ENCRYPTION_INFO,
/**
* Active Format Description data consisting of a single byte as specified
* in ETSI TS 101 154 using AVActiveFormatDescription enum.
*/
AV_PKT_DATA_AFD,
/**
* Producer Reference Time data corresponding to the AVProducerReferenceTime struct,
* usually exported by some encoders (on demand through the prft flag set in the
* AVCodecContext export_side_data field).
*/
AV_PKT_DATA_PRFT,
/**
* ICC profile data consisting of an opaque octet buffer following the
* format described by ISO 15076-1.
*/
AV_PKT_DATA_ICC_PROFILE,
/**
* DOVI configuration
* ref:
* dolby-vision-bitstreams-within-the-iso-base-media-file-format-v2.1.2, section 2.2
* dolby-vision-bitstreams-in-mpeg-2-transport-stream-multiplex-v1.2, section 3.3
* Tags are stored in struct AVDOVIDecoderConfigurationRecord.
*/
AV_PKT_DATA_DOVI_CONF,
/**
* Timecode which conforms to SMPTE ST 12-1:2014. The data is an array of 4 uint32_t
* where the first uint32_t describes how many (1-3) of the other timecodes are used.
* The timecode format is described in the documentation of av_timecode_get_smpte_from_framenum()
* function in libavutil/timecode.h.
*/
AV_PKT_DATA_S12M_TIMECODE,
/**
* HDR10+ dynamic metadata associated with a video frame. The metadata is in
* the form of the AVDynamicHDRPlus struct and contains
* information for color volume transform - application 4 of
* SMPTE 2094-40:2016 standard.
*/
AV_PKT_DATA_DYNAMIC_HDR10_PLUS,
/**
* The number of side data types.
* This is not part of the public API/ABI in the sense that it may
* change when new side data types are added.
* This must stay the last enum value.
* If its value becomes huge, some code using it
* needs to be updated as it assumes it to be smaller than other limits.
*/
AV_PKT_DATA_NB
};
#define AV_PKT_DATA_QUALITY_FACTOR AV_PKT_DATA_QUALITY_STATS //DEPRECATED
typedef struct AVPacketSideData {
uint8_t *data;
size_t size;
enum AVPacketSideDataType type;
} AVPacketSideData;
/**
* This structure stores compressed data. It is typically exported by demuxers
* and then passed as input to decoders, or received as output from encoders and
* then passed to muxers.
*
* For video, it should typically contain one compressed frame. For audio it may
* contain several compressed frames. Encoders are allowed to output empty
* packets, with no compressed data, containing only side data
* (e.g. to update some stream parameters at the end of encoding).
*
* The semantics of data ownership depends on the buf field.
* If it is set, the packet data is dynamically allocated and is
* valid indefinitely until a call to av_packet_unref() reduces the
* reference count to 0.
*
* If the buf field is not set av_packet_ref() would make a copy instead
* of increasing the reference count.
*
* The side data is always allocated with av_malloc(), copied by
* av_packet_ref() and freed by av_packet_unref().
*
* sizeof(AVPacket) being a part of the public ABI is deprecated. once
* av_init_packet() is removed, new packets will only be able to be allocated
* with av_packet_alloc(), and new fields may be added to the end of the struct
* with a minor bump.
*
* @see av_packet_alloc
* @see av_packet_ref
* @see av_packet_unref
*/
typedef struct AVPacket {
/**
* A reference to the reference-counted buffer where the packet data is
* stored.
* May be NULL, then the packet data is not reference-counted.
*/
AVBufferRef *buf;
/**
* Presentation timestamp in AVStream->time_base units; the time at which
* the decompressed packet will be presented to the user.
* Can be AV_NOPTS_VALUE if it is not stored in the file.
* pts MUST be larger or equal to dts as presentation cannot happen before
* decompression, unless one wants to view hex dumps. Some formats misuse
* the terms dts and pts/cts to mean something different. Such timestamps
* must be converted to true pts/dts before they are stored in AVPacket.
*/
int64_t pts;
/**
* Decompression timestamp in AVStream->time_base units; the time at which
* the packet is decompressed.
* Can be AV_NOPTS_VALUE if it is not stored in the file.
*/
int64_t dts;
uint8_t *data;
int size;
int stream_index;
/**
* A combination of AV_PKT_FLAG values
*/
int flags;
/**
* Additional packet data that can be provided by the container.
* Packet can contain several types of side information.
*/
AVPacketSideData *side_data;
int side_data_elems;
/**
* Duration of this packet in AVStream->time_base units, 0 if unknown.
* Equals next_pts - this_pts in presentation order.
*/
int64_t duration;
int64_t pos; ///< byte position in stream, -1 if unknown
/**
* for some private data of the user
*/
void *opaque;
/**
* AVBufferRef for free use by the API user. FFmpeg will never check the
* contents of the buffer ref. FFmpeg calls av_buffer_unref() on it when
* the packet is unreferenced. av_packet_copy_props() calls create a new
* reference with av_buffer_ref() for the target packet's opaque_ref field.
*
* This is unrelated to the opaque field, although it serves a similar
* purpose.
*/
AVBufferRef *opaque_ref;
/**
* Time base of the packet's timestamps.
* In the future, this field may be set on packets output by encoders or
* demuxers, but its value will be by default ignored on input to decoders
* or muxers.
*/
AVRational time_base;
} AVPacket;
#if FF_API_INIT_PACKET
attribute_deprecated
typedef struct AVPacketList {
AVPacket pkt;
struct AVPacketList *next;
} AVPacketList;
#endif
#define AV_PKT_FLAG_KEY 0x0001 ///< The packet contains a keyframe
#define AV_PKT_FLAG_CORRUPT 0x0002 ///< The packet content is corrupted
/**
* Flag is used to discard packets which are required to maintain valid
* decoder state but are not required for output and should be dropped
* after decoding.
**/
#define AV_PKT_FLAG_DISCARD 0x0004
/**
* The packet comes from a trusted source.
*
* Otherwise-unsafe constructs such as arbitrary pointers to data
* outside the packet may be followed.
*/
#define AV_PKT_FLAG_TRUSTED 0x0008
/**
* Flag is used to indicate packets that contain frames that can
* be discarded by the decoder. I.e. Non-reference frames.
*/
#define AV_PKT_FLAG_DISPOSABLE 0x0010
enum AVSideDataParamChangeFlags {
#if FF_API_OLD_CHANNEL_LAYOUT
/**
* @deprecated those are not used by any decoder
*/
AV_SIDE_DATA_PARAM_CHANGE_CHANNEL_COUNT = 0x0001,
AV_SIDE_DATA_PARAM_CHANGE_CHANNEL_LAYOUT = 0x0002,
#endif
AV_SIDE_DATA_PARAM_CHANGE_SAMPLE_RATE = 0x0004,
AV_SIDE_DATA_PARAM_CHANGE_DIMENSIONS = 0x0008,
};
/**
* Allocate an AVPacket and set its fields to default values. The resulting
* struct must be freed using av_packet_free().
*
* @return An AVPacket filled with default values or NULL on failure.
*
* @note this only allocates the AVPacket itself, not the data buffers. Those
* must be allocated through other means such as av_new_packet.
*
* @see av_new_packet
*/
AVPacket *av_packet_alloc(void);
/**
* Create a new packet that references the same data as src.
*
* This is a shortcut for av_packet_alloc()+av_packet_ref().
*
* @return newly created AVPacket on success, NULL on error.
*
* @see av_packet_alloc
* @see av_packet_ref
*/
AVPacket *av_packet_clone(const AVPacket *src);
/**
* Free the packet, if the packet is reference counted, it will be
* unreferenced first.
*
* @param pkt packet to be freed. The pointer will be set to NULL.
* @note passing NULL is a no-op.
*/
void av_packet_free(AVPacket **pkt);
#if FF_API_INIT_PACKET
/**
* Initialize optional fields of a packet with default values.
*
* Note, this does not touch the data and size members, which have to be
* initialized separately.
*
* @param pkt packet
*
* @see av_packet_alloc
* @see av_packet_unref
*
* @deprecated This function is deprecated. Once it's removed,
sizeof(AVPacket) will not be a part of the ABI anymore.
*/
attribute_deprecated
void av_init_packet(AVPacket *pkt);
#endif
/**
* Allocate the payload of a packet and initialize its fields with
* default values.
*
* @param pkt packet
* @param size wanted payload size
* @return 0 if OK, AVERROR_xxx otherwise
*/
int av_new_packet(AVPacket *pkt, int size);
/**
* Reduce packet size, correctly zeroing padding
*
* @param pkt packet
* @param size new size
*/
void av_shrink_packet(AVPacket *pkt, int size);
/**
* Increase packet size, correctly zeroing padding
*
* @param pkt packet
* @param grow_by number of bytes by which to increase the size of the packet
*/
int av_grow_packet(AVPacket *pkt, int grow_by);
/**
* Initialize a reference-counted packet from av_malloc()ed data.
*
* @param pkt packet to be initialized. This function will set the data, size,
* and buf fields, all others are left untouched.
* @param data Data allocated by av_malloc() to be used as packet data. If this
* function returns successfully, the data is owned by the underlying AVBuffer.
* The caller may not access the data through other means.
* @param size size of data in bytes, without the padding. I.e. the full buffer
* size is assumed to be size + AV_INPUT_BUFFER_PADDING_SIZE.
*
* @return 0 on success, a negative AVERROR on error
*/
int av_packet_from_data(AVPacket *pkt, uint8_t *data, int size);
/**
* Allocate new information of a packet.
*
* @param pkt packet
* @param type side information type
* @param size side information size
* @return pointer to fresh allocated data or NULL otherwise
*/
uint8_t* av_packet_new_side_data(AVPacket *pkt, enum AVPacketSideDataType type,
size_t size);
/**
* Wrap an existing array as a packet side data.
*
* @param pkt packet
* @param type side information type
* @param data the side data array. It must be allocated with the av_malloc()
* family of functions. The ownership of the data is transferred to
* pkt.
* @param size side information size
* @return a non-negative number on success, a negative AVERROR code on
* failure. On failure, the packet is unchanged and the data remains
* owned by the caller.
*/
int av_packet_add_side_data(AVPacket *pkt, enum AVPacketSideDataType type,
uint8_t *data, size_t size);
/**
* Shrink the already allocated side data buffer
*
* @param pkt packet
* @param type side information type
* @param size new side information size
* @return 0 on success, < 0 on failure
*/
int av_packet_shrink_side_data(AVPacket *pkt, enum AVPacketSideDataType type,
size_t size);
/**
* Get side information from packet.
*
* @param pkt packet
* @param type desired side information type
* @param size If supplied, *size will be set to the size of the side data
* or to zero if the desired side data is not present.
* @return pointer to data if present or NULL otherwise
*/
uint8_t* av_packet_get_side_data(const AVPacket *pkt, enum AVPacketSideDataType type,
size_t *size);
const char *av_packet_side_data_name(enum AVPacketSideDataType type);
/**
* Pack a dictionary for use in side_data.
*
* @param dict The dictionary to pack.
* @param size pointer to store the size of the returned data
* @return pointer to data if successful, NULL otherwise
*/
uint8_t *av_packet_pack_dictionary(AVDictionary *dict, size_t *size);
/**
* Unpack a dictionary from side_data.
*
* @param data data from side_data
* @param size size of the data
* @param dict the metadata storage dictionary
* @return 0 on success, < 0 on failure
*/
int av_packet_unpack_dictionary(const uint8_t *data, size_t size,
AVDictionary **dict);
/**
* Convenience function to free all the side data stored.
* All the other fields stay untouched.
*
* @param pkt packet
*/
void av_packet_free_side_data(AVPacket *pkt);
/**
* Setup a new reference to the data described by a given packet
*
* If src is reference-counted, setup dst as a new reference to the
* buffer in src. Otherwise allocate a new buffer in dst and copy the
* data from src into it.
*
* All the other fields are copied from src.
*
* @see av_packet_unref
*
* @param dst Destination packet. Will be completely overwritten.
* @param src Source packet
*
* @return 0 on success, a negative AVERROR on error. On error, dst
* will be blank (as if returned by av_packet_alloc()).
*/
int av_packet_ref(AVPacket *dst, const AVPacket *src);
/**
* Wipe the packet.
*
* Unreference the buffer referenced by the packet and reset the
* remaining packet fields to their default values.
*
* @param pkt The packet to be unreferenced.
*/
void av_packet_unref(AVPacket *pkt);
/**
* Move every field in src to dst and reset src.
*
* @see av_packet_unref
*
* @param src Source packet, will be reset
* @param dst Destination packet
*/
void av_packet_move_ref(AVPacket *dst, AVPacket *src);
/**
* Copy only "properties" fields from src to dst.
*
* Properties for the purpose of this function are all the fields
* beside those related to the packet data (buf, data, size)
*
* @param dst Destination packet
* @param src Source packet
*
* @return 0 on success AVERROR on failure.
*/
int av_packet_copy_props(AVPacket *dst, const AVPacket *src);
/**
* Ensure the data described by a given packet is reference counted.
*
* @note This function does not ensure that the reference will be writable.
* Use av_packet_make_writable instead for that purpose.
*
* @see av_packet_ref
* @see av_packet_make_writable
*
* @param pkt packet whose data should be made reference counted.
*
* @return 0 on success, a negative AVERROR on error. On failure, the
* packet is unchanged.
*/
int av_packet_make_refcounted(AVPacket *pkt);
/**
* Create a writable reference for the data described by a given packet,
* avoiding data copy if possible.
*
* @param pkt Packet whose data should be made writable.
*
* @return 0 on success, a negative AVERROR on failure. On failure, the
* packet is unchanged.
*/
int av_packet_make_writable(AVPacket *pkt);
/**
* Convert valid timing fields (timestamps / durations) in a packet from one
* timebase to another. Timestamps with unknown values (AV_NOPTS_VALUE) will be
* ignored.
*
* @param pkt packet on which the conversion will be performed
* @param tb_src source timebase, in which the timing fields in pkt are
* expressed
* @param tb_dst destination timebase, to which the timing fields will be
* converted
*/
void av_packet_rescale_ts(AVPacket *pkt, AVRational tb_src, AVRational tb_dst);
/**
* @}
*/
#endif // AVCODEC_PACKET_H
AVPacket结构体
AVPacket结构体声明在FFmpeg源码(本文演示用的FFmpeg源码版本为7.0.1)的头文件libavcodec/packet.h中:
/**
* @}
*/
/**
* @defgroup lavc_packet AVPacket
*
* Types and functions for working with AVPacket.
* @{
*/
/**
* This structure stores compressed data. It is typically exported by demuxers
* and then passed as input to decoders, or received as output from encoders and
* then passed to muxers.
*
* For video, it should typically contain one compressed frame. For audio it may
* contain several compressed frames. Encoders are allowed to output empty
* packets, with no compressed data, containing only side data
* (e.g. to update some stream parameters at the end of encoding).
*
* The semantics of data ownership depends on the buf field.
* If it is set, the packet data is dynamically allocated and is
* valid indefinitely until a call to av_packet_unref() reduces the
* reference count to 0.
*
* If the buf field is not set av_packet_ref() would make a copy instead
* of increasing the reference count.
*
* The side data is always allocated with av_malloc(), copied by
* av_packet_ref() and freed by av_packet_unref().
*
* sizeof(AVPacket) being a part of the public ABI is deprecated. once
* av_init_packet() is removed, new packets will only be able to be allocated
* with av_packet_alloc(), and new fields may be added to the end of the struct
* with a minor bump.
*
* @see av_packet_alloc
* @see av_packet_ref
* @see av_packet_unref
*/
typedef struct AVPacket {
/**
* A reference to the reference-counted buffer where the packet data is
* stored.
* May be NULL, then the packet data is not reference-counted.
*/
AVBufferRef *buf;
/**
* Presentation timestamp in AVStream->time_base units; the time at which
* the decompressed packet will be presented to the user.
* Can be AV_NOPTS_VALUE if it is not stored in the file.
* pts MUST be larger or equal to dts as presentation cannot happen before
* decompression, unless one wants to view hex dumps. Some formats misuse
* the terms dts and pts/cts to mean something different. Such timestamps
* must be converted to true pts/dts before they are stored in AVPacket.
*/
int64_t pts;
/**
* Decompression timestamp in AVStream->time_base units; the time at which
* the packet is decompressed.
* Can be AV_NOPTS_VALUE if it is not stored in the file.
*/
int64_t dts;
uint8_t *data;
int size;
int stream_index;
/**
* A combination of AV_PKT_FLAG values
*/
int flags;
/**
* Additional packet data that can be provided by the container.
* Packet can contain several types of side information.
*/
AVPacketSideData *side_data;
int side_data_elems;
/**
* Duration of this packet in AVStream->time_base units, 0 if unknown.
* Equals next_pts - this_pts in presentation order.
*/
int64_t duration;
int64_t pos; ///< byte position in stream, -1 if unknown
/**
* for some private data of the user
*/
void *opaque;
/**
* AVBufferRef for free use by the API user. FFmpeg will never check the
* contents of the buffer ref. FFmpeg calls av_buffer_unref() on it when
* the packet is unreferenced. av_packet_copy_props() calls create a new
* reference with av_buffer_ref() for the target packet's opaque_ref field.
*
* This is unrelated to the opaque field, although it serves a similar
* purpose.
*/
AVBufferRef *opaque_ref;
/**
* Time base of the packet's timestamps.
* In the future, this field may be set on packets output by encoders or
* demuxers, but its value will be by default ignored on input to decoders
* or muxers.
*/
AVRational time_base;
} AVPacket;
成员变量buf:
AVBufferRef类型指针,指向“存储packet(一个数据包的压缩后的音视频)数据的引用计数缓冲区”。如果为NULL,表示该packet数据未被引用计数。AVPacket通过AVBufferRef来管理引用计数缓冲区。通过AVBufferRef结构体里面的AVBuffer里面的成员变量refcount记录资源使用的次数,控制资源的释放。可以通过av_buffer_get_ref_count(const AVBufferRef *buf);方法得到引用计数
关于AVBufferRef类型可以参考:FFmpeg引用计数数据缓冲区相关的结构体:AVBuffer、AVBufferRef。-CSDN博客
成员变量pts:
显示时间戳(presentation time stamp)。即帧显示的时间刻度,用来告诉播放器在哪个时间点显示此帧(可以简单理解为这帧视频或音频数据的播放时间)。其单位不是秒,而是以AVStream->time_base为单位。pts必须大于或等于dts,因为一帧视频或音频数据必须在解码后才能播放,所以一帧视频或音频数据的显示/播放时间必须大于或等于解码时间。
在avpacket中,pts 并不由我们写入,这是因为 pts 的显示时间,那么最初的原始数据YUV在存储到avframe的时候,就需要写入pts,不然后面的avpacket怎么知道呢?
成员变量dts:
解码时间戳(Decompression timestamp)。即帧解码的时间刻度,用来告诉播放器在哪个时间点解码此帧。其单位不是秒,而是以AVStream->time_base为单位。
如果解码 和显示都是按照顺序的,那么dts和pts都是一样的,只有当视频中含有B帧的时候,pts 和dts 会有不同的时候,这是因为B帧会参考 前后的帧显示,因此解码的时候先要解码前面的帧,然后解码后面的帧,才能解码自己,但是显示的时候顺序还是一样的,前面一帧--->自己---》后面一帧
dts是由具体的解码器内部生成的,这也很好理解,例如你用的 H264的解码器,或者H265的解码器,那么不同的解码器算法肯定不同,怎么压缩,那一帧是关键帧,后面的哪些帧依赖于这个关键帧,是不是弄成B帧呀,都是不一样的,因此 解码的顺序也是由具体的解码器说的算的
成员变量data:
指针,指向“存放压缩后的一帧(对于视频通常包含一个压缩帧,对于音频可能包含几个压缩帧)音视频数据的缓冲区”。
成员变量size:
成员变量data指向的缓冲区的大小,单位为字节。
成员变量stream_index:
索引,用来标识该AVPacket所属的视频/音频流的序号,表示这是第几路流。注意:它是从0而不是从1开始的。
成员变量flags:
AV_PKT_FLAG的组合。值有如下选择:
#define AV_PKT_FLAG_KEY 0x0001 ///< The packet contains a keyframe
#define AV_PKT_FLAG_CORRUPT 0x0002 ///< The packet content is corrupted
/**
* Flag is used to discard packets which are required to maintain valid
* decoder state but are not required for output and should be dropped
* after decoding.
**/
#define AV_PKT_FLAG_DISCARD 0x0004
/**
* The packet comes from a trusted source.
*
* Otherwise-unsafe constructs such as arbitrary pointers to data
* outside the packet may be followed.
*/
#define AV_PKT_FLAG_TRUSTED 0x0008
/**
* Flag is used to indicate packets that contain frames that can
* be discarded by the decoder. I.e. Non-reference frames.
*/
#define AV_PKT_FLAG_DISPOSABLE 0x0010
AV_PKT_FLAG_KEY:数据包包含一个关键帧,即当前AVPacket是关键帧。可以独立显示出来的一张图片,当然一般情况下,这张图片是有做 帧内编码的(参考视频编码原理那一节),这个很重要,在seekg的时候,一定要移动到 关键帧
AV_PKT_FLAG_CORRUPT:数据包内容已损坏。
AV_PKT_FLAG_DISCARD:用于丢弃需要保持有效解码器状态但不需要输出的数据包,并且在解码后应该丢弃。带有该标志的AVPacket所携带的数据为解码器相关的信息,不会被解码出一幅图像。
AV_PKT_FLAG_TRUSTED:该数据包来自一个可信的源。
AV_PKT_FLAG_DISPOSABLE:用于指示包含可以被解码器丢弃的帧的数据包。也就是非参考帧。
成员变量side_data:
存放“容器可以提供的额外数据包数据”的数组的首地址。数据包可以包含多种类型的边信息,比如,在编码结束的时候更新一些流的参数。指针side_data指向的空间存储了用于解码、展现或处理编码流的辅助信息,它通常由解复用器和编码器导出,可以以分组为单位提供给解码器和复用器,也可以作为全局侧数据(应用于整个编码流)。
成员变量side_data_elems:
side_data的数量。
成员变量duration:
该数据包的持续时间,以AVStream->time_base为单位。值为下一个数据包的pts减去当前数据包的pts。如果值为0表示未知。
成员变量pos:
该数据包在流中的位置,单位为字节。值为-1表示未知。
成员变量opaque:
指针,指向“存放用户使用的私有数据的缓冲区”。
成员变量time_base:
AVRational类型,数据包时间戳的时间基准,即pts和dts的时间基。
例如对于视频来说,这个值可能是 1,25 也就是说,1秒钟我们显示
AVPacket 相关函数说明
av_packet_alloc函数
av_packet_alloc函数定义在源文件libavcodec/avpacket.c中:
需要通过av_packet_free() 释放
* @note this only allocates the AVPacket itself, not the data buffers. Those
* must be allocated through other means such as av_new_packet.
需要注意的是: 通过 av_packet_alloc的只能 allocates avpacket自己,里面有写内容给了默认值,有些给了特殊值,//调用 get_packet_defaults(AVPacket *pkt)出了特殊值 的有pts,dts,pos,time_base(time_base在 ffmpeg4.3没有,在5.0以后有)
#define AV_NOPTS_VALUE ((int64_t)UINT64_C(0x8000000000000000))
pkt->pts = AV_NOPTS_VALUE;
pkt->dts = AV_NOPTS_VALUE;
pkt->pos = -1;
pkt->time_base = av_make_q(0, 1);
/**
* Allocate an AVPacket and set its fields to default values. The resulting
* struct must be freed using av_packet_free().
*
* @return An AVPacket filled with default values or NULL on failure.
*
* @note this only allocates the AVPacket itself, not the data buffers. Those
* must be allocated through other means such as av_new_packet.
*
* @see av_new_packet
*/
AVPacket *av_packet_alloc(void);
实现
AVPacket *av_packet_alloc(void)
{
AVPacket *pkt = av_malloc(sizeof(AVPacket));
if (!pkt)
return pkt;
get_packet_defaults(pkt);
return pkt;
}
//调用 get_packet_defaults(AVPacket *pkt)出了默认值 的有pts,dts,pos,time_base
static void get_packet_defaults(AVPacket *pkt)
{
// 清空值,都是0,这意味着后面学习的 av_init_packet(AVPacket * pkt)方法作用不大,因此在ffmpeg5.0之后,将av_init_packet这个方法 标志成了 过时的。
memset(pkt, 0, sizeof(*pkt));
pkt->pts = AV_NOPTS_VALUE;
pkt->dts = AV_NOPTS_VALUE;
pkt->pos = -1;
pkt->time_base = av_make_q(0, 1);
}
测试,我们看到在 av_packet_alloc之后,除了avpacket自己有值外,里面的数据都是0或者特殊值。
void av_init_packet(AVPacket* pkt); 已过时
从前面我们使用 av_packet_alloc的源码可以看到,在alloc的时候 memset 了0,然后给了pts,dts,timebase,pos 特殊值,我们看到 av_inti_packet方法除了给 pos,pts,dts,timebase特殊值外,其他值也是0,
这说明:av_init_packet方法干了 av_packet_alloc的部分工作,如果user 是先调用了av_packet_alloc();然后再调用 av_init_packet,就会显得很 冗余,这可能也是ffmpeg在5.0上将此方法标识为过时的原因。
那么这个方法到底有没有应用场景呢?应该是有的,当我们不通过 av_packet_alloc()去 create一个AVPacket *的时候,而是直接在 栈上使用一个 AVPacket,那么这个方法就可以初始化avpacket的内容。
#if FF_API_INIT_PACKET
/**
* Initialize optional fields of a packet with default values.
*
* Note, this does not touch the data and size members, which have to be
* initialized separately.
*
* @param pkt packet
*
* @see av_packet_alloc
* @see av_packet_unref
*
* @deprecated This function is deprecated. Once it's removed,
sizeof(AVPacket) will not be a part of the ABI anymore.
*/
attribute_deprecated
void av_init_packet(AVPacket *pkt);
#endif
实现
#if FF_API_INIT_PACKET
void av_init_packet(AVPacket *pkt)
{
pkt->pts = AV_NOPTS_VALUE;
pkt->dts = AV_NOPTS_VALUE;
pkt->pos = -1;
pkt->duration = 0;
pkt->flags = 0;
pkt->stream_index = 0;
pkt->buf = NULL;
pkt->side_data = NULL;
pkt->side_data_elems = 0;
pkt->opaque = NULL;
pkt->opaque_ref = NULL;
pkt->time_base = av_make_q(0, 1);
}
#endif
测试:
无作用版:
void createAVPacketandInit1() {
AVPacket* avpacket = av_packet_alloc();
if (avpacket == nullptr) {
cout << "av_packet_alloc error" << endl;
}
cout << "debug point 0" << endl;
av_init_packet(avpacket);
cout << "debug point 1" << endl;
}
有点作用版:
void createAVPacketandInit() {
AVPacket avpacket;
cout << "debug point 0" << endl;
av_init_packet(&avpacket);
cout << "debug point 1" << endl;
}
av_packet_alloc 和 av_init_packet的区别是?
初始化的区别在于没有给size赋值。
我们再来回顾一下前面关于 这个 size是啥?
成员变量size:成员变量data指向的缓冲区的大小,单位为字节。
有啥用? 在后面 av_packet_clone函数中就可以看到,如果这个size的值没有被赋值过,则clone的new avpacket 会失败,也就是返回nullptr。
void av_packet_free(AVPacket **pkt);
/**
* Free the packet, if the packet is reference counted, it will be
* unreferenced first.
*
* @param pkt packet to be freed. The pointer will be set to NULL.
* @note passing NULL is a no-op.
*/
void av_packet_free(AVPacket **pkt);
实现
从实现可以看到,这个不管是不ptk 是不是nullptr,都不会有错误
void av_packet_free(AVPacket **pkt)
{
if (!pkt || !*pkt)
return;
av_packet_unref(*pkt);
av_freep(pkt);
}
从这个方法来看,是将pkt的内部数据都释放了,并且给内部数据重新给了默认值
av_packet_unref(*pkt);
void av_packet_unref(AVPacket *pkt)
{
av_packet_free_side_data(pkt);
av_buffer_unref(&pkt->opaque_ref);
av_buffer_unref(&pkt->buf);
get_packet_defaults(pkt);
}
从 av_freep 方法来看,是 将 &pkt,的值赋值给&val,然后将&pkg赋值为null,最后再free &val。
为什么写的这么复杂呢?
直接free &pkt 不行吗? 这个好处是啥呢?知道的童鞋可以回复一下,感谢!!!
void av_freep(void *arg)
{
void *val;
memcpy(&val, arg, sizeof(val));
memcpy(arg, &(void *){ NULL }, sizeof(val));
av_free(val);
}
void av_free(void *ptr)
{
#if HAVE_ALIGNED_MALLOC
_aligned_free(ptr);
#else
free(ptr);
#endif
}
使用测试
void createAVpacketandFreeAVPacket() {
AVPacket* avpacket = av_packet_alloc();
if (avpacket == nullptr) {
cout << "av_packet_alloc error" << endl;
}
cout << "debugpoint1" << endl;
av_packet_free(&avpacket);
cout << "debugpoint2" << endl;
}
AVPacket* av_packet_clone(const AVPacket* src);
This is a shortcut for av_packet_alloc()+av_packet_ref().
/**
* Create a new packet that references the same data as src.
*
* This is a shortcut for av_packet_alloc()+av_packet_ref().
*
* @return newly created AVPacket on success, NULL on error.
*
* @see av_packet_alloc
* @see av_packet_ref
*/
AVPacket* av_packet_clone(const AVPacket* src);
实现可以看到 :是先 ret = av_packet_alloc,然后调用 (av_packet_ref(ret, src)),最后返回 新建的这个ret。
这里的关键是 av_packet_ref(AVPacket *dst, const AVPacket *src) 方法
AVPacket *av_packet_clone(const AVPacket *src)
{
AVPacket *ret = av_packet_alloc();
if (!ret)
return ret;
if (av_packet_ref(ret, src))
av_packet_free(&ret);
return ret;
}
int av_packet_ref(AVPacket *dst, const AVPacket *src)
{
int ret;
dst->buf = NULL;
ret = av_packet_copy_props(dst, src);
if (ret < 0)
goto fail;
if (!src->buf) {
ret = packet_alloc(&dst->buf, src->size);
if (ret < 0)
goto fail;
av_assert1(!src->size || src->data);
if (src->size)
memcpy(dst->buf->data, src->data, src->size);
dst->data = dst->buf->data;
} else {
dst->buf = av_buffer_ref(src->buf);
if (!dst->buf) {
ret = AVERROR(ENOMEM);
goto fail;
}
dst->data = src->data;
}
dst->size = src->size;
return 0;
fail:
av_packet_unref(dst);
return ret;
}
实验测试1 :如果在 src 是不是通过 av_packet_clone出来的,或者 没有通过 av_init_packet初始化过packet 的会有 runtime error
/***
*
* 实验测试当 AVPacket 没有赋值的时候,使用 av_packet_clone会报error
***/
void avpacketclone() {
AVPacket avpacket1 ;//实验测试当 AVPacket 没有赋值的时候,使用 av_packet_clone会报error
AVPacket* newavpacket = av_packet_clone(&avpacket1);
if (newavpacket == nullptr) {
cout << "newavpacket = nullptr" << endl;
}
cout << "debug point" << endl;
}
实验测试2:
* 实验测试当 AVPacket 在栈空间,且通过 av_init_packet初始化,
* 返回的newavpacket是nullptr
* root case 是 av_packet_ref(ret, src) ,packet_alloc(&dst->buf, src->size) ;src->size 的值是 < 0的,因此返回nullptr
/***
*
* 实验测试当 AVPacket 在栈空间,且通过 av_init_packet初始化,
* 返回的newavpacket是nullptr
* root case 是 av_packet_ref(ret, src) ,packet_alloc(&dst->buf, src->size) ;src->size 的值是 < 0的,因此返回nullptr
*
***/
void avpacketclone1() {
AVPacket avpacket1;//实验测试当 AVPacket 没有赋值的时候,使用 av_packet_clone会报error
av_init_packet(&avpacket1);
//那么通过av_packet_alloc方法是否OK呢?
AVPacket* newavpacket = av_packet_clone(&avpacket1);
if (newavpacket == nullptr) {
cout << "newavpacket = nullptr" << endl;
}
cout << "debug point" << endl;
}
实验测试3:
/// <summary>
/// 上述 通过 av_packet_clone方法 不是有 runtime exception就是 clone出来的newpacket为nullpptr
/// clone出来的newpacket 为nullptr 的root case 是 因为size 为一个默认值,很大的负数,没有被赋值为0或者其他值
/// 那我们下来手动的将这个 size这个值设置为 一个具体的数,行不行呢?
/// 如何设置这个值,我们查看 .h文件,发现有一个api说明比较像
/// int av_new_packet(AVPacket *pkt, int size);
/// 先来测试一下,我们再来研究这个 av_new_packet 函数
/// <summary>
/// 上述 通过 av_packet_clone方法 不是有 runtime exception就是 clone出来的newpacket为nullpptr
/// clone出来的newpacket 为nullptr 的root case 是 因为size 为一个默认值,很大的负数,没有被赋值为0或者其他值
/// 那我们下来手动的将这个 size这个值设置为 一个具体的数,行不行呢?
/// 如何设置这个值,我们查看 .h文件,发现有一个api说明比较像
/// int av_new_packet(AVPacket *pkt, int size);
/// 先来测试一下,我们再来研究这个 av_new_packet 函数
/// </summary>
void avpacketclone2() {
AVPacket* avpacket = av_packet_alloc();
int ret = 0;
ret = av_new_packet(avpacket, 10);
AVPacket* newavpacket = av_packet_clone(avpacket);
if (newavpacket == nullptr) {
cout << "newavpacket = nullptr" << endl;
}
cout << "debug point" << endl;
}
结论是:成功,且两个packet 的buf的指针是一样的。
int av_new_packet(AVPacket *pkt, int size);
给pkt 赋初始值(这个赋初值包含size吗?包含且为0,在后面的源码中可以看到);然后再给data 分配大小为size。
/**
* Allocate the payload of a packet and initialize its fields with
* default values.
*
* @param pkt packet
* @param size wanted payload size
* @return 0 if OK, AVERROR_xxx otherwise
*/
int av_new_packet(AVPacket *pkt, int size);
源码:
从代码中可以看到 apcket_alloc的时候,这个size就很关键了,size的大小决定了到底赋值还是不赋值
int av_new_packet(AVPacket *pkt, int size)
{
AVBufferRef *buf = NULL;
int ret = packet_alloc(&buf, size);
if (ret < 0)
return ret;
get_packet_defaults(pkt);
pkt->buf = buf;
pkt->data = buf->data;
pkt->size = size;
return 0;
}
//即使size的值是符合预期的,分配的大小 还要加上一个 AV_INPUT_BUFFER_PADDING_SIZE(64)
//为啥要多弄出来一个64 呢?这是因为有些解码器,编码器为了算法优化,会有一些多余的buffer(这个buffer一般都是小于等于64的),因此ffmpeg在设计的时候,就多加了个64
static int packet_alloc(AVBufferRef **buf, int size)
{
int ret;
// 错误判断
if (size < 0 || size >= INT_MAX - AV_INPUT_BUFFER_PADDING_SIZE)
return AVERROR(EINVAL);
/// 真的分配空间
ret = av_buffer_realloc(buf, size + AV_INPUT_BUFFER_PADDING_SIZE);
if (ret < 0)
return ret;
///清空空间
memset((*buf)->data + size, 0, AV_INPUT_BUFFER_PADDING_SIZE);
return 0;
}
///这里看一下,ffmpeg中分配空间的方法
void *av_realloc(void *ptr, size_t size)
{
/// error判断
void *ret;
if (size > atomic_load_explicit(&max_alloc_size, memory_order_relaxed))
return NULL;
/// HAVE_ALIGNED_MALLOC=1,因此代码会走到 _aligned_realloc这一行
#if HAVE_ALIGNED_MALLOC
ret = _aligned_realloc(ptr, size + !size, ALIGN);
#else
ret = realloc(ptr, size + !size);
#endif
/// CONFIG_MEMORY_POISONING =0; 因此下面的代码不会走。
#if CONFIG_MEMORY_POISONING
if (ret && !ptr)
memset(ret, FF_MEMORY_POISON, size);
#endif
return ret;
}
///_aligned_realloc 方法的详细说明
https://learn.microsoft.com/zh-cn/cpp/c-runtime-library/reference/aligned-realloc?view=msvc-170
_aligned_realloc(ptr, size + !size, ALIGN);ALIGN是32
给ptr 分配 (size + !size)的大小 ,这个大小为啥是 (size + !size)为什么这么写呢?
在c语言中 !0 = 1, !1=0, 猜测ffmpeg的开发者 这么写是为了保证这个值最少是1,可能是为了某个bug,也可能是为了保证这个值的必须 >0.
void * _aligned_realloc(
void *memblock,
size_t size,
size_t alignment
);
memblock
当前的内存块指针。
size
请求的内存分配的大小。
alignment
对齐值,必须是 2 的整数次幂。
static void get_packet_defaults(AVPacket *pkt)
{
memset(pkt, 0, sizeof(*pkt));
pkt->pts = AV_NOPTS_VALUE;
pkt->dts = AV_NOPTS_VALUE;
pkt->pos = -1;
pkt->time_base = av_make_q(0, 1);
}
在看完源码之后,能想到这个api使用的时机是什么吗?
猜测是我们知道了要传入的packet 的data 大小,可以提前设定这个大小?
void av_shrink_packet(AVPacket *pkt, int size);
成员变量data:
指针,指向“存放压缩后的一帧(对于视频通常包含一个压缩帧,对于音频可能包含几个压缩帧)音视频数据的缓冲区”。
成员变量size:
成员变量data指向的缓冲区的大小,单位为字节。
shrink 是收缩,缩小的意思,从字面意思来是,是将pkt data 的size 变成现在的值。
将当前pkt 中的 data的大小变成size,如果当前pkt->size本身就比要设置的size小,则直接return,
例如原先pkt->size的值是8,user 想要改成,16,那就不变还是8
例如原先pkt->size的值是8,user 想要改成6,那么就会变成6.
然后还会将 pkt->data + size 后的 AV_INPUT_BUFFER_PADDING_SIZE大小的空间清零
这也很好理解,size 变化了,本身就在size后面多加了AV_INPUT_BUFFER_PADDING_SIZE,要保证 AV_INPUT_BUFFER_PADDING_SIZE 这段空间是清零的。
/**
* Reduce packet size, correctly zeroing padding
*
* @param pkt packet
* @param size new size
*/
void av_shrink_packet(AVPacket *pkt, int size);
实现
void av_shrink_packet(AVPacket *pkt, int size)
{
if (pkt->size <= size)
return;
pkt->size = size;
memset(pkt->data + size, 0, AV_INPUT_BUFFER_PADDING_SIZE);
}
问题是:在哪里使用呢?什么时机使用呢?
int av_grow_packet(AVPacket* pkt, int grow_by);
增加数据包大小,正确归零填充
/**
* Increase packet size, correctly zeroing padding
*
* @param pkt packet
* @param grow_by number of bytes by which to increase the size of the packet
*/
int av_grow_packet(AVPacket *pkt, int grow_by);
实现:
从实现来看,
增加数据包(pkt->data指向的缓冲区)的大小,让该大小增至(pkt->size + grow_by)字节。让地址为(pkt->data + pkt->size + grow_by)后的数据字节归零。执行该函数后,pkt->size会增至(pkt->size + grow_by)字节。返回0表示成功,返回负数表示失败。
int av_grow_packet(AVPacket *pkt, int grow_by)
{
int new_size;
av_assert0((unsigned)pkt->size <= INT_MAX - AV_INPUT_BUFFER_PADDING_SIZE);
if ((unsigned)grow_by >
INT_MAX - (pkt->size + AV_INPUT_BUFFER_PADDING_SIZE))
return AVERROR(ENOMEM);
new_size = pkt->size + grow_by + AV_INPUT_BUFFER_PADDING_SIZE;
if (pkt->buf) {
size_t data_offset;
uint8_t *old_data = pkt->data;
if (pkt->data == NULL) {
data_offset = 0;
pkt->data = pkt->buf->data;
} else {
data_offset = pkt->data - pkt->buf->data;
if (data_offset > INT_MAX - new_size)
return AVERROR(ENOMEM);
}
if (new_size + data_offset > pkt->buf->size ||
!av_buffer_is_writable(pkt->buf)) {
int ret;
// allocate slightly more than requested to avoid excessive
// reallocations
if (new_size + data_offset < INT_MAX - new_size/16)
new_size += new_size/16;
ret = av_buffer_realloc(&pkt->buf, new_size + data_offset);
if (ret < 0) {
pkt->data = old_data;
return ret;
}
pkt->data = pkt->buf->data + data_offset;
}
} else {
pkt->buf = av_buffer_alloc(new_size);
if (!pkt->buf)
return AVERROR(ENOMEM);
if (pkt->size > 0)
memcpy(pkt->buf->data, pkt->data, pkt->size);
pkt->data = pkt->buf->data;
}
pkt->size += grow_by;
memset(pkt->data + pkt->size, 0, AV_INPUT_BUFFER_PADDING_SIZE);
return 0;
}
int av_packet_from_data(AVPacket *pkt, uint8_t *data, int size)
使用已经分配好的buffer初始化一个AVPacket,会设置AVPacket的data和size成员。传入的size参数是减去了AV_INPUT_BUFFER_PADDING_SIZE的,也就是size + AV_INPUT_BUFFER_PADDING_SIZE等于buffer总的大小。
代码实现,从实现上来看,会将 pkt->data指向传进来的data,大小为size,注意的 pkt的data 赋值并没有 copy,而是直接将指针赋值给了pkt的data,也就是说,在pkt 的data没有使用的时候,不要释放data空间,释放了意味着pkt的data也就变化了 ;;如果覆盖了传递进来的data空间,也意味着pkt的data的内容变化了。
/**
* Initialize a reference-counted packet from av_malloc()ed data.
*
* @param pkt packet to be initialized. This function will set the data, size,
* and buf fields, all others are left untouched.
* @param data Data allocated by av_malloc() to be used as packet data. If this
* function returns successfully, the data is owned by the underlying AVBuffer.
* The caller may not access the data through other means.
* @param size size of data in bytes, without the padding. I.e. the full buffer
* size is assumed to be size + AV_INPUT_BUFFER_PADDING_SIZE.
*
* @return 0 on success, a negative AVERROR on error
*/
int av_packet_from_data(AVPacket *pkt, uint8_t *data, int size);
int av_packet_from_data(AVPacket *pkt, uint8_t *data, int size)
{
if (size >= INT_MAX - AV_INPUT_BUFFER_PADDING_SIZE)
return AVERROR(EINVAL);
pkt->buf = av_buffer_create(data, size + AV_INPUT_BUFFER_PADDING_SIZE,
av_buffer_default_free, NULL, 0);
if (!pkt->buf)
return AVERROR(ENOMEM);
pkt->data = data;
pkt->size = size;
return 0;
}
int av_buffer_get_ref_count(const AVBufferRef *buf);
得到avpacket或者 avframe的 引用计数
int av_buffer_get_ref_count(const AVBufferRef *buf)
{
return atomic_load(&buf->buffer->refcount);
}
cout<<av_buffer_get_ref_count(avpacket->buf)<<endl;
cout<<av_buffer_get_ref_count(avframe->buf)<<endl;
uint8_t* av_packet_new_side_data(AVPacket* pkt, enum AVPacketSideDataType type, size_t size);
返回值是要存储的 size_data的指针。
AVPacket->side_data是AVPacket携带的side数据数组,AVPacket->side_data_elems是数组的长度。av_packet_new_side_data
和av_packet_add_side_data
函数都提供了向AVPacket添加指定类型side data的能力,只是参数略有差异,每次都会把新side data添加到数组的尾部。 av_packet_get_side_data
函数提供了从AVPacket获取指定类型side data的能力。
/**
* Allocate new information of a packet.
*
* @param pkt packet
* @param type side information type
* @param size side information size
* @return pointer to fresh allocated data or NULL otherwise
*/
uint8_t* av_packet_new_side_data(AVPacket* pkt, enum AVPacketSideDataType type,
size_t size);
uint8_t *av_packet_new_side_data(AVPacket *pkt, enum AVPacketSideDataType type,
size_t size)
{
int ret;
uint8_t *data;
if (size > SIZE_MAX - AV_INPUT_BUFFER_PADDING_SIZE)
return NULL;
data = av_mallocz(size + AV_INPUT_BUFFER_PADDING_SIZE);
if (!data)
return NULL;
ret = av_packet_add_side_data(pkt, type, data, size);
if (ret < 0) {
av_freep(&data);
return NULL;
}
return data;
}
int av_packet_add_side_data(AVPacket *pkt, enum AVPacketSideDataType type, uint8_t *data, size_t size);
/**
* Wrap an existing array as a packet side data.
*
* @param pkt packet
* @param type side information type
* @param data the side data array. It must be allocated with the av_malloc()
* family of functions. The ownership of the data is transferred to
* pkt.
* @param size side information size
* @return a non-negative number on success, a negative AVERROR code on
* failure. On failure, the packet is unchanged and the data remains
* owned by the caller.
*/
int av_packet_add_side_data(AVPacket *pkt, enum AVPacketSideDataType type,
uint8_t *data, size_t size);
int av_packet_add_side_data(AVPacket *pkt, enum AVPacketSideDataType type,
uint8_t *data, size_t size)
{
AVPacketSideData *tmp;
int i, elems = pkt->side_data_elems;
for (i = 0; i < elems; i++) {
AVPacketSideData *sd = &pkt->side_data[i];
if (sd->type == type) {
av_free(sd->data);
sd->data = data;
sd->size = size;
return 0;
}
}
if ((unsigned)elems + 1 > AV_PKT_DATA_NB)
return AVERROR(ERANGE);
tmp = av_realloc(pkt->side_data, (elems + 1) * sizeof(*tmp));
if (!tmp)
return AVERROR(ENOMEM);
pkt->side_data = tmp;
pkt->side_data[elems].data = data;
pkt->side_data[elems].size = size;
pkt->side_data[elems].type = type;
pkt->side_data_elems++;
return 0;
}
参考ffmpeg源码中的一些使用。
如下的例子都是ffmpeg在编码的时候用到,再回看关于 字段size_data的说明: 存放“容器可以提供的额外数据包数据”的数组的首地址。数据包可以包含多种类型的边信息,比如,在编码结束的时候更新一些流的参数。指针side_data指向的空间存储了用于解码、展现或处理编码流的辅助信息,它通常由解复用器和编码器导出,可以以分组为单位提供给解码器和复用器,也可以作为全局侧数据(应用于整个编码流)。
flac.enc中的使用
static int flac_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
const AVFrame *frame, int *got_packet_ptr)
{
FlacEncodeContext *s;
int frame_bytes, out_bytes, ret;
s = avctx->priv_data;
/* when the last block is reached, update the header in extradata */
if (!frame) {
s->max_framesize = s->max_encoded_framesize;
av_md5_final(s->md5ctx, s->md5sum);
write_streaminfo(s, avctx->extradata);
if (!s->flushed) {
uint8_t *side_data = av_packet_new_side_data(avpkt, AV_PKT_DATA_NEW_EXTRADATA,
avctx->extradata_size);
if (!side_data)
return AVERROR(ENOMEM);
memcpy(side_data, avctx->extradata, avctx->extradata_size);
avpkt->pts = s->next_pts;
*got_packet_ptr = 1;
s->flushed = 1;
}
return 0;
}
从img2dec.c中看到
要结合 av_packet_pack_dictionary方法使用
static int add_filename_as_pkt_side_data(char *filename, AVPacket *pkt) {
AVDictionary *d = NULL;
char *packed_metadata = NULL;
size_t metadata_len;
int ret;
av_dict_set(&d, "lavf.image2dec.source_path", filename, 0);
av_dict_set(&d, "lavf.image2dec.source_basename", av_basename(filename), 0);
packed_metadata = av_packet_pack_dictionary(d, &metadata_len);
av_dict_free(&d);
if (!packed_metadata)
return AVERROR(ENOMEM);
ret = av_packet_add_side_data(pkt, AV_PKT_DATA_STRINGS_METADATA,
packed_metadata, metadata_len);
if (ret < 0) {
av_freep(&packed_metadata);
return ret;
}
return 0;
}
总结一下:一般这玩意在 特定的编码器的时候使用,表明我们要给avpacket中添加一些特殊的信息,信息的类型由 AVPacketSideDataType 决定,那么 AVPacketSideDataType 有哪些?这些翻译出来也不知道真正的意思是啥,应该是对于 每一种特殊的编码学习的时候,会用到这个,我们假设mp4编码器有特殊的值,那么就在这个 AVPacketSideDataType 里面找。
size_t size : 应该是 要设置的AVPacket->side_data的大小。在实际开发中遇到后,应该多测试,看是否要减去这个 AV_INPUT_BUFFER_PADDING_SIZE
uint8_t* av_packet_get_side_data(const AVPacket* pkt, enum AVPacketSideDataType type, size_t* size);
这个看起来就在解码的时候用到,得到avpacket中存储的值
/**
* Get side information from packet.
*
* @param pkt packet
* @param type desired side information type
* @param size If supplied, *size will be set to the size of the side data
* or to zero if the desired side data is not present.
* @return pointer to data if present or NULL otherwise
*/
uint8_t* av_packet_get_side_data(const AVPacket* pkt, enum AVPacketSideDataType type,
size_t* size);
源码实现
uint8_t *av_packet_get_side_data(const AVPacket *pkt, enum AVPacketSideDataType type,
size_t *size)
{
int i;
for (i = 0; i < pkt->side_data_elems; i++) {
if (pkt->side_data[i].type == type) {
if (size)
*size = pkt->side_data[i].size;
return pkt->side_data[i].data;
}
}
if (size)
*size = 0;
return NULL;
}
源码中的使用
static int h264_decode_frame(AVCodecContext *avctx, AVFrame *pict,
int *got_frame, AVPacket *avpkt)
{
const uint8_t *buf = avpkt->data;
int buf_size = avpkt->size;
H264Context *h = avctx->priv_data;
int buf_index;
int ret;
h->flags = avctx->flags;
h->setup_finished = 0;
h->nb_slice_ctx_queued = 0;
ff_h264_unref_picture(h, &h->last_pic_for_ec);
/* end of stream, output what is still in the buffers */
if (buf_size == 0)
return send_next_delayed_frame(h, pict, got_frame, 0);
if (av_packet_get_side_data(avpkt, AV_PKT_DATA_NEW_EXTRADATA, NULL)) {
size_t side_size;
uint8_t *side = av_packet_get_side_data(avpkt, AV_PKT_DATA_NEW_EXTRADATA, &side_size);
ff_h264_decode_extradata(side, side_size,
&h->ps, &h->is_avc, &h->nal_length_size,
avctx->err_recognition, avctx);
}
if (h->is_avc && buf_size >= 9 && buf[0]==1 && buf[2]==0 && (buf[4]&0xFC)==0xFC) {
if (is_avcc_extradata(buf, buf_size))
return ff_h264_decode_extradata(buf, buf_size,
&h->ps, &h->is_avc, &h->nal_length_size,
avctx->err_recognition, avctx);
}
buf_index = decode_nal_units(h, buf, buf_size);
if (buf_index < 0)
return AVERROR_INVALIDDATA;
if (!h->cur_pic_ptr && h->nal_unit_type == H264_NAL_END_SEQUENCE) {
av_assert0(buf_index <= buf_size);
return send_next_delayed_frame(h, pict, got_frame, buf_index);
}
if (!(avctx->flags2 & AV_CODEC_FLAG2_CHUNKS) && (!h->cur_pic_ptr || !h->has_slice)) {
if (avctx->skip_frame >= AVDISCARD_NONREF ||
buf_size >= 4 && !memcmp("Q264", buf, 4))
return buf_size;
av_log(avctx, AV_LOG_ERROR, "no frame!\n");
return AVERROR_INVALIDDATA;
}
if (!(avctx->flags2 & AV_CODEC_FLAG2_CHUNKS) ||
(h->mb_y >= h->mb_height && h->mb_height)) {
if ((ret = ff_h264_field_end(h, &h->slice_ctx[0], 0)) < 0)
return ret;
/* Wait for second field. */
if (h->next_output_pic) {
ret = finalize_frame(h, pict, h->next_output_pic, got_frame);
if (ret < 0)
return ret;
}
}
av_assert0(pict->buf[0] || !*got_frame);
ff_h264_unref_picture(h, &h->last_pic_for_ec);
return get_consumed_bytes(buf_index, buf_size);
}
int av_packet_shrink_side_data(AVPacket* pkt, enum AVPacketSideDataType type, size_t size);
/**
* Shrink the already allocated side data buffer
*
* @param pkt packet
* @param type side information type
* @param size new side information size
* @return 0 on success, < 0 on failure
*/
int av_packet_shrink_side_data(AVPacket* pkt, enum AVPacketSideDataType type,
size_t size);
源码
int av_packet_shrink_side_data(AVPacket *pkt, enum AVPacketSideDataType type,
size_t size)
{
int i;
for (i = 0; i < pkt->side_data_elems; i++) {
if (pkt->side_data[i].type == type) {
if (size > pkt->side_data[i].size)
return AVERROR(ENOMEM);
pkt->side_data[i].size = size;
return 0;
}
}
return AVERROR(ENOENT);
}
使用,看到只有在mpegvideo_enc.c中有使用,应该和上述的 av_packet_new_side_data和 av_packet_add_side_data 相关,
int ff_mpv_encode_picture(AVCodecContext *avctx, AVPacket *pkt,
const AVFrame *pic_arg, int *got_packet)
{
MpegEncContext *s = avctx->priv_data;
int i, stuffing_count, ret;
int context_count = s->slice_context_count;
s->vbv_ignore_qmax = 0;
s->picture_in_gop_number++;
if (load_input_picture(s, pic_arg) < 0)
return -1;
if (select_input_picture(s) < 0) {
return -1;
}
/* output? */
if (s->new_picture->data[0]) {
int growing_buffer = context_count == 1 && !s->data_partitioning;
size_t pkt_size = 10000 + s->mb_width * s->mb_height *
(growing_buffer ? 64 : (MAX_MB_BYTES + 100));
if (CONFIG_MJPEG_ENCODER && avctx->codec_id == AV_CODEC_ID_MJPEG) {
ret = ff_mjpeg_add_icc_profile_size(avctx, s->new_picture, &pkt_size);
if (ret < 0)
return ret;
}
if ((ret = ff_alloc_packet(avctx, pkt, pkt_size)) < 0)
return ret;
pkt->size = avctx->internal->byte_buffer_size - AV_INPUT_BUFFER_PADDING_SIZE;
if (s->mb_info) {
s->mb_info_ptr = av_packet_new_side_data(pkt,
AV_PKT_DATA_H263_MB_INFO,
s->mb_width*s->mb_height*12);
s->prev_mb_info = s->last_mb_info = s->mb_info_size = 0;
}
for (i = 0; i < context_count; i++) {
int start_y = s->thread_context[i]->start_mb_y;
int end_y = s->thread_context[i]-> end_mb_y;
int h = s->mb_height;
uint8_t *start = pkt->data + (size_t)(((int64_t) pkt->size) * start_y / h);
uint8_t *end = pkt->data + (size_t)(((int64_t) pkt->size) * end_y / h);
init_put_bits(&s->thread_context[i]->pb, start, end - start);
}
s->pict_type = s->new_picture->pict_type;
//emms_c();
ret = frame_start(s);
if (ret < 0)
return ret;
vbv_retry:
ret = encode_picture(s);
if (growing_buffer) {
av_assert0(s->pb.buf == avctx->internal->byte_buffer);
pkt->data = s->pb.buf;
pkt->size = avctx->internal->byte_buffer_size;
}
if (ret < 0)
return -1;
frame_end(s);
if ((CONFIG_MJPEG_ENCODER || CONFIG_AMV_ENCODER) && s->out_format == FMT_MJPEG)
ff_mjpeg_encode_picture_trailer(&s->pb, s->header_bits);
if (avctx->rc_buffer_size) {
RateControlContext *rcc = &s->rc_context;
int max_size = FFMAX(rcc->buffer_index * avctx->rc_max_available_vbv_use, rcc->buffer_index - 500);
int hq = (avctx->mb_decision == FF_MB_DECISION_RD || avctx->trellis);
int min_step = hq ? 1 : (1<<(FF_LAMBDA_SHIFT + 7))/139;
if (put_bits_count(&s->pb) > max_size &&
s->lambda < s->lmax) {
s->next_lambda = FFMAX(s->lambda + min_step, s->lambda *
(s->qscale + 1) / s->qscale);
if (s->adaptive_quant) {
int i;
for (i = 0; i < s->mb_height * s->mb_stride; i++)
s->lambda_table[i] =
FFMAX(s->lambda_table[i] + min_step,
s->lambda_table[i] * (s->qscale + 1) /
s->qscale);
}
s->mb_skipped = 0; // done in frame_start()
// done in encode_picture() so we must undo it
if (s->pict_type == AV_PICTURE_TYPE_P) {
if (s->flipflop_rounding ||
s->codec_id == AV_CODEC_ID_H263P ||
s->codec_id == AV_CODEC_ID_MPEG4)
s->no_rounding ^= 1;
}
if (s->pict_type != AV_PICTURE_TYPE_B) {
s->time_base = s->last_time_base;
s->last_non_b_time = s->time - s->pp_time;
}
for (i = 0; i < context_count; i++) {
PutBitContext *pb = &s->thread_context[i]->pb;
init_put_bits(pb, pb->buf, pb->buf_end - pb->buf);
}
s->vbv_ignore_qmax = 1;
av_log(avctx, AV_LOG_VERBOSE, "reencoding frame due to VBV\n");
goto vbv_retry;
}
av_assert0(avctx->rc_max_rate);
}
if (avctx->flags & AV_CODEC_FLAG_PASS1)
ff_write_pass1_stats(s);
for (i = 0; i < 4; i++) {
avctx->error[i] += s->encoding_error[i];
}
ff_side_data_set_encoder_stats(pkt, s->current_picture.f->quality,
s->encoding_error,
(avctx->flags&AV_CODEC_FLAG_PSNR) ? MPEGVIDEO_MAX_PLANES : 0,
s->pict_type);
if (avctx->flags & AV_CODEC_FLAG_PASS1)
assert(put_bits_count(&s->pb) == s->header_bits + s->mv_bits +
s->misc_bits + s->i_tex_bits +
s->p_tex_bits);
flush_put_bits(&s->pb);
s->frame_bits = put_bits_count(&s->pb);
stuffing_count = ff_vbv_update(s, s->frame_bits);
s->stuffing_bits = 8*stuffing_count;
if (stuffing_count) {
if (put_bytes_left(&s->pb, 0) < stuffing_count + 50) {
av_log(avctx, AV_LOG_ERROR, "stuffing too large\n");
return -1;
}
switch (s->codec_id) {
case AV_CODEC_ID_MPEG1VIDEO:
case AV_CODEC_ID_MPEG2VIDEO:
while (stuffing_count--) {
put_bits(&s->pb, 8, 0);
}
break;
case AV_CODEC_ID_MPEG4:
put_bits(&s->pb, 16, 0);
put_bits(&s->pb, 16, 0x1C3);
stuffing_count -= 4;
while (stuffing_count--) {
put_bits(&s->pb, 8, 0xFF);
}
break;
default:
av_log(avctx, AV_LOG_ERROR, "vbv buffer overflow\n");
s->stuffing_bits = 0;
}
flush_put_bits(&s->pb);
s->frame_bits = put_bits_count(&s->pb);
}
/* update MPEG-1/2 vbv_delay for CBR */
if (avctx->rc_max_rate &&
avctx->rc_min_rate == avctx->rc_max_rate &&
s->out_format == FMT_MPEG1 &&
90000LL * (avctx->rc_buffer_size - 1) <=
avctx->rc_max_rate * 0xFFFFLL) {
AVCPBProperties *props;
size_t props_size;
int vbv_delay, min_delay;
double inbits = avctx->rc_max_rate *
av_q2d(avctx->time_base);
int minbits = s->frame_bits - 8 *
(s->vbv_delay_pos - 1);
double bits = s->rc_context.buffer_index + minbits - inbits;
uint8_t *const vbv_delay_ptr = s->pb.buf + s->vbv_delay_pos;
if (bits < 0)
av_log(avctx, AV_LOG_ERROR,
"Internal error, negative bits\n");
av_assert1(s->repeat_first_field == 0);
vbv_delay = bits * 90000 / avctx->rc_max_rate;
min_delay = (minbits * 90000LL + avctx->rc_max_rate - 1) /
avctx->rc_max_rate;
vbv_delay = FFMAX(vbv_delay, min_delay);
av_assert0(vbv_delay < 0xFFFF);
vbv_delay_ptr[0] &= 0xF8;
vbv_delay_ptr[0] |= vbv_delay >> 13;
vbv_delay_ptr[1] = vbv_delay >> 5;
vbv_delay_ptr[2] &= 0x07;
vbv_delay_ptr[2] |= vbv_delay << 3;
props = av_cpb_properties_alloc(&props_size);
if (!props)
return AVERROR(ENOMEM);
props->vbv_delay = vbv_delay * 300;
ret = av_packet_add_side_data(pkt, AV_PKT_DATA_CPB_PROPERTIES,
(uint8_t*)props, props_size);
if (ret < 0) {
av_freep(&props);
return ret;
}
}
s->total_bits += s->frame_bits;
pkt->pts = s->current_picture.f->pts;
pkt->duration = s->current_picture.f->duration;
if (!s->low_delay && s->pict_type != AV_PICTURE_TYPE_B) {
if (!s->current_picture.coded_picture_number)
pkt->dts = pkt->pts - s->dts_delta;
else
pkt->dts = s->reordered_pts;
s->reordered_pts = pkt->pts;
} else
pkt->dts = pkt->pts;
// the no-delay case is handled in generic code
if (avctx->codec->capabilities & AV_CODEC_CAP_DELAY) {
ret = ff_encode_reordered_opaque(avctx, pkt, s->current_picture.f);
if (ret < 0)
return ret;
}
if (s->current_picture.f->key_frame)
pkt->flags |= AV_PKT_FLAG_KEY;
if (s->mb_info)
av_packet_shrink_side_data(pkt, AV_PKT_DATA_H263_MB_INFO, s->mb_info_size);
} else {
s->frame_bits = 0;
}
/* release non-reference frames */
for (i = 0; i < MAX_PICTURE_COUNT; i++) {
if (!s->picture[i].reference)
ff_mpeg_unref_picture(avctx, &s->picture[i]);
}
av_assert1((s->frame_bits & 7) == 0);
pkt->size = s->frame_bits / 8;
*got_packet = !!pkt->size;
return 0;
}
const char *av_packet_side_data_name(enum AVPacketSideDataType type);
const char *av_packet_side_data_name(enum AVPacketSideDataType type);
实现:
const char *av_packet_side_data_name(enum AVPacketSideDataType type)
{
switch(type) {
case AV_PKT_DATA_PALETTE: return "Palette";
case AV_PKT_DATA_NEW_EXTRADATA: return "New Extradata";
case AV_PKT_DATA_PARAM_CHANGE: return "Param Change";
case AV_PKT_DATA_H263_MB_INFO: return "H263 MB Info";
case AV_PKT_DATA_REPLAYGAIN: return "Replay Gain";
case AV_PKT_DATA_DISPLAYMATRIX: return "Display Matrix";
case AV_PKT_DATA_STEREO3D: return "Stereo 3D";
case AV_PKT_DATA_AUDIO_SERVICE_TYPE: return "Audio Service Type";
case AV_PKT_DATA_QUALITY_STATS: return "Quality stats";
case AV_PKT_DATA_FALLBACK_TRACK: return "Fallback track";
case AV_PKT_DATA_CPB_PROPERTIES: return "CPB properties";
case AV_PKT_DATA_SKIP_SAMPLES: return "Skip Samples";
case AV_PKT_DATA_JP_DUALMONO: return "JP Dual Mono";
case AV_PKT_DATA_STRINGS_METADATA: return "Strings Metadata";
case AV_PKT_DATA_SUBTITLE_POSITION: return "Subtitle Position";
case AV_PKT_DATA_MATROSKA_BLOCKADDITIONAL: return "Matroska BlockAdditional";
case AV_PKT_DATA_WEBVTT_IDENTIFIER: return "WebVTT ID";
case AV_PKT_DATA_WEBVTT_SETTINGS: return "WebVTT Settings";
case AV_PKT_DATA_METADATA_UPDATE: return "Metadata Update";
case AV_PKT_DATA_MPEGTS_STREAM_ID: return "MPEGTS Stream ID";
case AV_PKT_DATA_MASTERING_DISPLAY_METADATA: return "Mastering display metadata";
case AV_PKT_DATA_CONTENT_LIGHT_LEVEL: return "Content light level metadata";
case AV_PKT_DATA_SPHERICAL: return "Spherical Mapping";
case AV_PKT_DATA_A53_CC: return "A53 Closed Captions";
case AV_PKT_DATA_ENCRYPTION_INIT_INFO: return "Encryption initialization data";
case AV_PKT_DATA_ENCRYPTION_INFO: return "Encryption info";
case AV_PKT_DATA_AFD: return "Active Format Description data";
case AV_PKT_DATA_PRFT: return "Producer Reference Time";
case AV_PKT_DATA_ICC_PROFILE: return "ICC Profile";
case AV_PKT_DATA_DOVI_CONF: return "DOVI configuration record";
case AV_PKT_DATA_S12M_TIMECODE: return "SMPTE ST 12-1:2014 timecode";
case AV_PKT_DATA_DYNAMIC_HDR10_PLUS: return "HDR10+ Dynamic Metadata (SMPTE 2094-40)";
}
return NULL;
}
uint8_t* av_packet_pack_dictionary(AVDictionary* dict, size_t* size);
将AVDictioary
中的数据放到一整块内存并返回;
返回值是 avpacket->data_side_data 的指针。
实际开发中 需要再给返回值 copy 数据才算完成
/**
* Pack a dictionary for use in side_data.
*
* @param dict The dictionary to pack.
* @param size pointer to store the size of the returned data
* @return pointer to data if successful, NULL otherwise
*/
uint8_t* av_packet_pack_dictionary(AVDictionary* dict, size_t* size);
源码实现
uint8_t *av_packet_pack_dictionary(AVDictionary *dict, size_t *size)
{
uint8_t *data = NULL;
*size = 0;
if (!dict)
return NULL;
for (int pass = 0; pass < 2; pass++) {
const AVDictionaryEntry *t = NULL;
size_t total_length = 0;
while ((t = av_dict_iterate(dict, t))) {
for (int i = 0; i < 2; i++) {
const char *str = i ? t->value : t->key;
const size_t len = strlen(str) + 1;
if (pass)
memcpy(data + total_length, str, len);
else if (len > SIZE_MAX - total_length)
return NULL;
total_length += len;
}
}
if (pass)
break;
data = av_malloc(total_length);
if (!data)
return NULL;
*size = total_length;
}
return data;
}
参考 av_packet_add_side_data 中例子。
int av_packet_unpack_dictionary(const uint8_t* data, size_t size,
AVDictionary** dict);
从一整块数据中解析出一个AVDictionary
;
实际上主要是给 dict 中传递数据解析 AVDictionary中 。
/**
* Unpack a dictionary from side_data.
*
* @param data data from side_data
* @param size size of the data
* @param dict the metadata storage dictionary
* @return 0 on success, < 0 on failure
*/
int av_packet_unpack_dictionary(const uint8_t* data, size_t size,
AVDictionary** dict);
int av_packet_unpack_dictionary(const uint8_t *data, size_t size,
AVDictionary **dict)
{
const uint8_t *end;
int ret;
if (!dict || !data || !size)
return 0;
end = data + size;
if (size && end[-1])
return AVERROR_INVALIDDATA;
while (data < end) {
const uint8_t *key = data;
const uint8_t *val = data + strlen(key) + 1;
if (val >= end || !*key)
return AVERROR_INVALIDDATA;
ret = av_dict_set(dict, key, val, 0);
if (ret < 0)
return ret;
data = val + strlen(val) + 1;
}
return 0;
}
void av_packet_free_side_data(AVPacket* pkt);
/**
* Convenience function to free all the side data stored.
* All the other fields stay untouched.
*
* @param pkt packet
*/
void av_packet_free_side_data(AVPacket* pkt);
实现
void av_packet_free_side_data(AVPacket *pkt)
{
int i;
for (i = 0; i < pkt->side_data_elems; i++)
av_freep(&pkt->side_data[i].data);
av_freep(&pkt->side_data);
pkt->side_data_elems = 0;
}
int av_packet_ref(AVPacket* dst, const AVPacket* src);
引用计数加一
/**
* Setup a new reference to the data described by a given packet
*
* If src is reference-counted, setup dst as a new reference to the
* buffer in src. Otherwise allocate a new buffer in dst and copy the
* data from src into it.
*
* All the other fields are copied from src.
*
* @see av_packet_unref
*
* @param dst Destination packet. Will be completely overwritten.
* @param src Source packet
*
* @return 0 on success, a negative AVERROR on error. On error, dst
* will be blank (as if returned by av_packet_alloc()).
*/
int av_packet_ref(AVPacket* dst, const AVPacket* src);
源码
int av_packet_ref(AVPacket *dst, const AVPacket *src)
{
int ret;
dst->buf = NULL;
ret = av_packet_copy_props(dst, src);
if (ret < 0)
goto fail;
if (!src->buf) {
ret = packet_alloc(&dst->buf, src->size);
if (ret < 0)
goto fail;
av_assert1(!src->size || src->data);
if (src->size)
memcpy(dst->buf->data, src->data, src->size);
dst->data = dst->buf->data;
} else {
dst->buf = av_buffer_ref(src->buf);
if (!dst->buf) {
ret = AVERROR(ENOMEM);
goto fail;
}
dst->data = src->data;
}
dst->size = src->size;
return 0;
fail:
av_packet_unref(dst);
return ret;
}
void av_packet_unref(AVPacket* pkt);
引用计数减一
/**
* Wipe the packet.
*
* Unreference the buffer referenced by the packet and reset the
* remaining packet fields to their default values.
*
* @param pkt The packet to be unreferenced.
*/
void av_packet_unref(AVPacket* pkt);
void av_packet_unref(AVPacket *pkt)
{
av_packet_free_side_data(pkt);
av_buffer_unref(&pkt->opaque_ref);
av_buffer_unref(&pkt->buf);
get_packet_defaults(pkt);
}
void av_packet_move_ref(AVPacket* dst, AVPacket* src);
引用计数不变,将src 的所有东西都转移给dst,然后将src 的值都恢复成默认值
那么move 之后,src就不能使用了
/**
* Move every field in src to dst and reset src.
*
* @see av_packet_unref
*
* @param src Source packet, will be reset
* @param dst Destination packet
*/
void av_packet_move_ref(AVPacket* dst, AVPacket* src);
void av_packet_move_ref(AVPacket *dst, AVPacket *src)
{
*dst = *src;
get_packet_defaults(src);
}
int av_packet_copy_props(AVPacket *dst, const AVPacket *src);
将src 中 "properties" 的字段拷贝给 dst,那么哪些属于是 "properties"呢?---》参考源码
/**
* Copy only "properties" fields from src to dst.
*
* Properties for the purpose of this function are all the fields
* beside those related to the packet data (buf, data, size)
*
* @param dst Destination packet
* @param src Source packet
*
* @return 0 on success AVERROR on failure.
*/
int av_packet_copy_props(AVPacket *dst, const AVPacket *src);
实现:
int av_packet_copy_props(AVPacket *dst, const AVPacket *src)
{
int i, ret;
dst->pts = src->pts;
dst->dts = src->dts;
dst->pos = src->pos;
dst->duration = src->duration;
dst->flags = src->flags;
dst->stream_index = src->stream_index;
dst->opaque = src->opaque;
dst->time_base = src->time_base;
dst->opaque_ref = NULL;
dst->side_data = NULL;
dst->side_data_elems = 0;
ret = av_buffer_replace(&dst->opaque_ref, src->opaque_ref);
if (ret < 0)
return ret;
for (i = 0; i < src->side_data_elems; i++) {
enum AVPacketSideDataType type = src->side_data[i].type;
size_t size = src->side_data[i].size;
uint8_t *src_data = src->side_data[i].data;
uint8_t *dst_data = av_packet_new_side_data(dst, type, size);
if (!dst_data) {
av_buffer_unref(&dst->opaque_ref);
av_packet_free_side_data(dst);
return AVERROR(ENOMEM);
}
memcpy(dst_data, src_data, size);
}
return 0;
}
int av_packet_make_writable(AVPacket *pkt);
从实现来看:如果传递的参数pkt 的 字段 ------ AVBufferRef *buf 不为null 且是可以写的,则直接返回0. AVPacket是否可写:对应的flags 非AV_BUFFER_FLAG_READONLY
如果buf 是null 或者不可写,则重新 alloc buf,并且传递给 pkt,总的来说,这个函数就是让 你传进来的pkt 的 buf字段变成可写的,将引用计数变为1
/**
* Create a writable reference for the data described by a given packet,
* avoiding data copy if possible.
*
* @param pkt Packet whose data should be made writable.
*
* @return 0 on success, a negative AVERROR on failure. On failure, the
* packet is unchanged.
*/
int av_packet_make_writable(AVPacket *pkt);
实现
int av_packet_make_writable(AVPacket *pkt)
{
AVBufferRef *buf = NULL;
int ret;
if (pkt->buf && av_buffer_is_writable(pkt->buf))
return 0;
ret = packet_alloc(&buf, pkt->size);
if (ret < 0)
return ret;
av_assert1(!pkt->size || pkt->data);
if (pkt->size)
memcpy(buf->data, pkt->data, pkt->size);
av_buffer_unref(&pkt->buf);
pkt->buf = buf;
pkt->data = buf->data;
return 0;
}
int av_packet_make_refcounted(AVPacket* pkt);
如果没有buf字段为null,则根据size 重新create buf,并将这个buf赋值给pkt的字段,最后将将引用计数变为1
/**
* Ensure the data described by a given packet is reference counted.
*
* @note This function does not ensure that the reference will be writable.
* Use av_packet_make_writable instead for that purpose.
*
* @see av_packet_ref
* @see av_packet_make_writable
*
* @param pkt packet whose data should be made reference counted.
*
* @return 0 on success, a negative AVERROR on error. On failure, the
* packet is unchanged.
*/
int av_packet_make_refcounted(AVPacket* pkt);
int av_packet_make_refcounted(AVPacket *pkt)
{
int ret;
if (pkt->buf)
return 0;
ret = packet_alloc(&pkt->buf, pkt->size);
if (ret < 0)
return ret;
av_assert1(!pkt->size || pkt->data);
if (pkt->size)
memcpy(pkt->buf->data, pkt->data, pkt->size);
pkt->data = pkt->buf->data;
return 0;
}
void av_packet_rescale_ts(AVPacket* pkt, AVRational tb_src, AVRational tb_dst);
/**
* Convert valid timing fields (timestamps / durations) in a packet from one
* timebase to another. Timestamps with unknown values (AV_NOPTS_VALUE) will be
* ignored.
*
* @param pkt packet on which the conversion will be performed
* @param tb_src source timebase, in which the timing fields in pkt are
* expressed
* @param tb_dst destination timebase, to which the timing fields will be
* converted
*/
void av_packet_rescale_ts(AVPacket* pkt, AVRational tb_src, AVRational tb_dst);
实现:
void av_packet_rescale_ts(AVPacket *pkt, AVRational src_tb, AVRational dst_tb)
{
if (pkt->pts != AV_NOPTS_VALUE)
pkt->pts = av_rescale_q(pkt->pts, src_tb, dst_tb);
if (pkt->dts != AV_NOPTS_VALUE)
pkt->dts = av_rescale_q(pkt->dts, src_tb, dst_tb);
if (pkt->duration > 0)
pkt->duration = av_rescale_q(pkt->duration, src_tb, dst_tb);
}
参考
从零到一学FFmpeg:av_packet_rescale_ts 函数详析与实战_avpacket 时间戳-CSDN博客
av_packet_rescale_ts是FFmpeg库中的一个函数,用于重新缩放或转换媒体流中的时间戳(timestamp),以适配不同的时间基(timebase)。
在处理多媒体数据时,特别是当数据在不同组件间传递,或者在编码、解码、转封装等操作中,时间戳经常需要调整以匹配当前上下文的时间基。
参数说明
pkt: 指向AVPacket结构体的指针,该结构体包含了要调整时间戳的媒体数据包。
tb_src: 原始时间基,即pkt中时间戳所依据的时间基。
通常,这来自于数据包来源的AVStream的time_base。
tb_dst: 目标时间基,即你想将时间戳转换到的时间基。
这通常与你打算将数据包发送到的目标组件(如解码器、输出格式上下文等)的时间基相匹配。
二、功能描述
时间戳转换: 该函数通过计算两个时间基之间的比例,对AVPacket中的pts(显示时间戳)和dts(解码时间戳)进行相应的缩放。这对于确保媒体处理管道中各环节的时间戳一致性至关重要。
同步与播放: 时间戳的正确调整对于视频和音频的同步播放非常重要,尤其是在涉及不同速率或格式转换的场景下。
三、使用实例
仅调整时间戳,不对数据包内的数据进行任何修改。
确保tb_src和tb_dst都是有效的AVRational结构体,避免除以零的错误。
在进行解复用、编码、解码或复用等操作前后,通常需要调用此函数来适配不同的时间基需求。
AVPacket pkt;
// 假设pkt是从某个输入流中获取的,已带有基于该流时间基的时间戳
AVRational in_timebase = (AVRational){1, 25}; // 假设输入时间基为25fps
AVRational out_timebase = (AVRational){1, 1000}; // 假设目标时间基为毫秒单位
// 调整时间戳
av_packet_rescale_ts(&pkt, in_timebase, out_timebase);
// 现在pkt的时间戳已转换为目标时间基,可以安全地用于输出或进一步处理