Day 03 - goroutine基础与原理
1. goroutine创建和调度
1.1 goroutine基本特性
特性 | 说明 |
---|
轻量级 | 初始栈大小仅2KB,可动态增长 |
调度方式 | 协作式调度,由Go运行时管理 |
创建成本 | 创建成本很低,可同时运行数十万个 |
通信方式 | 通过channel进行通信,而不是共享内存 |
1.2 创建goroutine的示例代码
package main
import (
"fmt"
"runtime"
"sync"
"time"
)
func monitorGoroutines(duration time.Duration, done chan struct{}) {
ticker := time.NewTicker(duration)
defer ticker.Stop()
for {
select {
case <-ticker.C:
fmt.Printf("当前goroutine数量: %d\n", runtime.NumGoroutine())
case <-done:
return
}
}
}
type Worker struct {
ID int
wg *sync.WaitGroup
}
func NewWorker(id int, wg *sync.WaitGroup) *Worker {
return &Worker{
ID: id,
wg: wg,
}
}
func (w *Worker) Work(jobs <-chan int, results chan<- int) {
defer w.wg.Done()
for job := range jobs {
fmt.Printf("Worker %d 开始处理任务 %d\n", w.ID, job)
time.Sleep(100 * time.Millisecond)
results <- job * 2
}
}
func main() {
numWorkers := 5
numJobs := 10
jobs := make(chan int, numJobs)
results := make(chan int, numJobs)
var wg sync.WaitGroup
done := make(chan struct{})
go monitorGoroutines(time.Second, done)
fmt.Printf("创建 %d 个worker\n", numWorkers)
for i := 1; i <= numWorkers; i++ {
wg.Add(1)
worker := NewWorker(i, &wg)
go worker.Work(jobs, results)
}
fmt.Printf("发送 %d 个任务\n", numJobs)
for j := 1; j <= numJobs; j++ {
jobs <- j
}
close(jobs)
go func() {
wg.Wait()
close(results)
}()
for result := range results {
fmt.Printf("收到结果: %d\n", result)
}
done <- struct{}{}
fmt.Printf("最终goroutine数量: %d\n", runtime.NumGoroutine())
}
2. GMP模型详解
2.1 GMP组件说明
组件 | 说明 | 职责 |
---|
G (Goroutine) | goroutine的抽象 | 包含goroutine的栈、程序计数器等信息 |
M (Machine) | 工作线程 | 执行G的实体,对应系统线程 |
P (Processor) | 处理器 | 维护G的运行队列,提供上下文环境 |
2.2 GMP调度流程图
2.3 GMP相关的运行时参数
runtime.GOMAXPROCS(n)
runtime.NumCPU()
runtime.NumGoroutine()
3. 并发模型原理
3.1 Go并发模型特点
特点 | 说明 |
---|
CSP模型 | 通过通信来共享内存,而不是共享内存来通信 |
非阻塞调度 | goroutine让出CPU时不会阻塞其他goroutine |
工作窃取 | 空闲P可以从其他P窃取任务 |
抢占式调度 | 支持基于信号的抢占式调度 |
3.2 并发模型示例
package main
import (
"context"
"fmt"
"runtime"
"sync"
"time"
)
type Pipeline struct {
input chan int
output chan int
done chan struct{}
}
func NewPipeline() *Pipeline {
return &Pipeline{
input: make(chan int),
output: make(chan int),
done: make(chan struct{}),
}
}
func (p *Pipeline) Process(ctx context.Context) {
go func() {
defer close(p.output)
for {
select {
case num, ok := <-p.input:
if !ok {
return
}
result := num * 2
select {
case p.output <- result:
case <-ctx.Done():
return
}
case <-ctx.Done():
return
}
}
}()
}
type WorkerPool struct {
workers int
tasks chan func()
wg sync.WaitGroup
}
func NewWorkerPool(workers int) *WorkerPool {
pool := &WorkerPool{
workers: workers,
tasks: make(chan func(), workers*2),
}
pool.Start()
return pool
}
func (p *WorkerPool) Start() {
for i := 0; i < p.workers; i++ {
p.wg.Add(1)
go func(workerID int) {
defer p.wg.Done()
for task := range p.tasks {
fmt.Printf("Worker %d executing task\n", workerID)
task()
}
}(i + 1)
}
}
func (p *WorkerPool) Submit(task func()) {
p.tasks <- task
}
func (p *WorkerPool) Stop() {
close(p.tasks)
p.wg.Wait()
}
func main() {
runtime.GOMAXPROCS(runtime.NumCPU())
ctx, cancel := context.WithTimeout(context.Background(), 5*time.Second)
defer cancel()
pipeline := NewPipeline()
pipeline.Process(ctx)
pool := NewWorkerPool(3)
go func() {
defer close(pipeline.input)
for i := 1; i <= 10; i++ {
select {
case pipeline.input <- i:
fmt.Printf("Sent %d to pipeline\n", i)
case <-ctx.Done():
return
}
}
}()
go func() {
for result := range pipeline.output {
result := result
pool.Submit(func() {
time.Sleep(100 * time.Millisecond)
fmt.Printf("Processed result: %d\n", result)
})
}
pool.Stop()
}()
<-ctx.Done()
fmt.Println("Main context done")
}
4. goroutine生命周期
4.1 生命周期状态
状态 | 说明 |
---|
创建 | goroutine被创建,分配栈空间 |
可运行 | 等待被调度执行 |
运行中 | 正在被M执行 |
系统调用中 | 阻塞在系统调用上 |
等待中 | 因channel或同步原语阻塞 |
死亡 | 执行完成,等待回收 |
4.2 生命周期示例
package main
import (
"context"
"fmt"
"runtime"
"runtime/debug"
"sync"
"time"
)
type GoroutineMonitor struct {
startTime time.Time
endTime time.Time
status string
sync.Mutex
}
func NewGoroutineMonitor() *GoroutineMonitor {
return &GoroutineMonitor{
startTime: time.Now(),
status: "created",
}
}
func (g *GoroutineMonitor) UpdateStatus(status string) {
g.Lock()
defer g.Unlock()
g.status = status
fmt.Printf("Goroutine状态更新: %s, 时间: %v\n", status, time.Since(g.startTime))
}
func (g *GoroutineMonitor) Complete() {
g.Lock()
defer g.Unlock()
g.endTime = time.Now()
g.status = "completed"
fmt.Printf("Goroutine完成, 总运行时间: %v\n", g.endTime.Sub(g.startTime))
}
type Task struct {
ID int
Duration time.Duration
Monitor *GoroutineMonitor
}
func (t *Task) Execute(ctx context.Context, wg *sync.WaitGroup) {
defer wg.Done()
defer t.Monitor.Complete()
defer func() {
if r := recover(); r != nil {
fmt.Printf("Task %d panic: %v\nStack: %s\n", t.ID, r, debug.Stack())
t.Monitor.UpdateStatus("panic")
}
}()
t.Monitor.UpdateStatus("running")
select {
case <-time.After(t.Duration):
t.Monitor.UpdateStatus("normal completion")
case <-ctx.Done():
t.Monitor.UpdateStatus("cancelled")
return
}
if t.ID%4 == 0 {
t.Monitor.UpdateStatus("blocked")
time.Sleep(100 * time.Millisecond)
} else if t.ID%3 == 0 {
panic("模拟任务panic")
}
}
type TaskScheduler struct {
tasks chan Task
workers int
monitors map[int]*GoroutineMonitor
mu sync.RWMutex
}
func NewTaskScheduler(workers int) *TaskScheduler {
return &TaskScheduler{
tasks: make(chan Task, workers*2),
workers: workers,
monitors: make(map[int]*GoroutineMonitor),
}
}
func (s *TaskScheduler) AddTask(task Task) {
s.mu.Lock()
s.monitors[task.ID] = task.Monitor
s.mu.Unlock()
s.tasks <- task
}
func (s *TaskScheduler) Start(ctx context.Context) {
var wg sync.WaitGroup
for i := 0; i < s.workers; i++ {
wg.Add(1)
go func(workerID int) {
defer wg.Done()
for task := range s.tasks {
task.Execute(ctx, &wg)
}
}(i)
}
go func() {
wg.Wait()
close(s.tasks)
}()
}
func main() {
runtime.GOMAXPROCS(4)
ctx, cancel := context.WithTimeout(context.Background(), 5*time.Second)
defer cancel()
scheduler := NewTaskScheduler(3)
scheduler.Start(ctx)
for i := 1; i <= 10; i++ {
task := Task{
ID: i,
Duration: time.Duration(i*200) * time.Millisecond,
Monitor: NewGoroutineMonitor(),
}
scheduler.AddTask(task)
}
<-ctx.Done()
fmt.Println("\n最终状态:")
scheduler.mu.RLock()
for id, monitor := range scheduler.monitors {
monitor.Lock()
fmt.Printf("Task %d - 状态: %s\n", id, monitor.status)
monitor.Unlock()
}
scheduler.mu.RUnlock()
}
4.3 Goroutine生命周期状态转换图
5. 实践注意事项
5.1 goroutine泄露的常见场景
- channel阻塞且无法释放
func leakyGoroutine() {
ch := make(chan int)
go func() {
val := <-ch
}()
}
- 无限循环
func infiniteLoop() {
go func() {
for {
}
}()
}
5.2 最佳实践表格
最佳实践 | 说明 |
---|
合理控制goroutine数量 | 避免无限制创建goroutine |
使用context控制生命周期 | 优雅管理goroutine的退出 |
处理panic | 避免goroutine意外退出影响整个程序 |
及时清理资源 | 使用defer确保资源释放 |
合理设置GOMAXPROCS | 根据CPU核心数调整P的数量 |
5.3 性能优化建议
- goroutine池化
type Pool struct {
work chan func()
sem chan struct{}
}
func NewPool(size int) *Pool {
return &Pool{
work: make(chan func()),
sem: make(chan struct{}, size),
}
}
func (p *Pool) Submit(task func()) {
select {
case p.work <- task:
case p.sem <- struct{}{}:
go p.worker(task)
}
}
func (p *Pool) worker(task func()) {
defer func() { <-p.sem }()
for {
task()
task = <-p.work
}
}
- 避免锁竞争
type Counter struct {
count int32
}
func (c *Counter) Increment() {
atomic.AddInt32(&c.count, 1)
}
func (c *Counter) Get() int32 {
return atomic.LoadInt32(&c.count)
}
6. 调试和监控
6.1 调试工具
- GODEBUG参数
GODEBUG=schedtrace=1000 ./program
GODEBUG=gctrace=1 ./program
- pprof工具
import _ "net/http/pprof"
go func() {
log.Println(http.ListenAndServe("localhost:6060", nil))
}()
6.2 监控指标
- goroutine数量
- P的使用率
- 系统调用次数
- 调度延迟
- GC影响
通过深入理解goroutine的原理和生命周期,我们可以:
- 更好地控制并发程序的行为
- 避免常见的并发陷阱
- 优化程序性能
- 排查并发相关问题
怎么样今天的内容还满意吗?再次感谢观众老爷的观看,关注GZH:凡人的AI工具箱,回复666,送您价值199的AI大礼包。最后,祝您早日实现财务自由,还请给个赞,谢谢!