1、数据集格式转换(json转txt)
import json
import os
'''
任务:实例分割,labelme的json文件, 转txt文件
Ultralytics YOLO format
<class-index> <x1> <y1> <x2> <y2> ... <xn> <yn>
'''
# 类别映射表,定义每个类别对应的ID
label_to_class_id = {
"tree": 0
# 根据需要添加更多类别
}
# json转txt
def convert_labelme_json_to_yolo(json_file, output_dir, img_width, img_height):
with open(json_file, 'r') as f:
labelme_data = json.load(f)
# 获取文件名(不含扩展名)
file_name = os.path.splitext(os.path.basename(json_file))[0]
# 输出的txt文件路径
txt_file_path = os.path.join(output_dir, f"{file_name}.txt")
with open(txt_file_path, 'w') as txt_file:
for shape in labelme_data['shapes']:
label = shape['label']
points = shape['points']
# 根据类别映射表获取类别ID,如果类别不在映射表中,跳过该标签
class_id = label_to_class_id.get(label)
if class_id is None:
print(f"Warning: Label '{label}' not found in class mapping. Skipping.")
continue
# 将点的坐标归一化到0-1范围
normalized_points = [(x / img_width, y / img_height) for x, y in points]
# 写入类别ID
txt_file.write(f"{class_id}")
# 写入多边形掩膜的所有归一化顶点坐标
for point in normalized_points:
txt_file.write(f" {point[0]:.6f} {point[1]:.6f}")
txt_file.write("\n")
if __name__ == "__main__":
json_dir = "json" # 替换为LabelMe标注的JSON文件目录
output_dir = "labels" # 输出的YOLO格式txt文件目录
img_width = 500 # 图像宽度,根据实际图片尺寸设置
img_height = 500 # 图像高度,根据实际图片尺寸设置
# 创建输出文件夹
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# 批量处理所有json文件
for json_file in os.listdir(json_dir):
if json_file.endswith(".json"):
json_path = os.path.join(json_dir, json_file)
convert_labelme_json_to_yolo(json_path, output_dir, img_width, img_height)
2、数据集扩充(带json标签)
import time
import random
import cv2
import os
import numpy as np
from skimage.util import random_noise
import base64
import json
import re
from copy import deepcopy
import argparse
class DataAugmentForObjectDetection():
#代码中包含五中数据增强的手段(噪声,光线,改变像素点,平移,镜像,打开后的数据增强为True,取消为False)
def __init__(self, change_light_rate=0.5,
add_noise_rate=0.2, random_point=0.5, flip_rate=0.5, shift_rate=0.5, rand_point_percent=0.03,
is_addNoise=True, is_changeLight=False, is_random_point=True, is_shift_pic_bboxes=True,
is_filp_pic_bboxes=True):
self.change_light_rate = change_light_rate
self.add_noise_rate = add_noise_rate
self.random_point = random_point
self.flip_rate = flip_rate
self.shift_rate = shift_rate
self.rand_point_percent = rand_point_percent
# 是否使用某种增强方式
self.is_addNoise = is_addNoise
self.is_changeLight = is_changeLight
self.is_random_point = is_random_point
self.is_filp_pic_bboxes = is_filp_pic_bboxes
self.is_shift_pic_bboxes = is_shift_pic_bboxes
# 加噪声(随机噪声)
def _addNoise(self, img):
return random_noise(img, seed=int(time.time())) * 255
# 调整亮度
def _changeLight(self, img):
alpha = random.uniform(0.35, 1)
blank = np.zeros(img.shape, img.dtype)
return cv2.addWeighted(img, alpha, blank, 1 - alpha, 0)
# 随机的改变点的值
def _addRandPoint(self, img):
percent = self.rand_point_percent
num = int(percent * img.shape[0] * img.shape[1])
for i in range(num):
rand_x = random.randint(0, img.shape[0] - 1)
rand_y = random.randint(0, img.shape[1] - 1)
if random.randint(0, 1) == 0:
img[rand_x, rand_y] = 0
else:
img[rand_x, rand_y] = 255
return img
# 平移图像(注:需要到labelme工具上调整图像,部分平移的标注框可能会超出图像边界,对训练造成影响)
def _shift_pic_bboxes(self, img, json_info):
h, w, _ = img.shape
x_min = w
x_max = 0
y_min = h
y_max = 0
shapes = json_info['shapes']
for shape in shapes:
points = np.array(shape['points'])
x_min = min(x_min, points[:, 0].min())
y_min = min(y_min, points[:, 1].min())
x_max = max(x_max, points[:, 0].max())
y_max = max(y_max, points[:, 0].max())
d_to_left = x_min
d_to_right = w - x_max
d_to_top = y_min
d_to_bottom = h - y_max
x = random.uniform(-(d_to_left - 1) / 3, (d_to_right - 1) / 3)
y = random.uniform(-(d_to_top - 1) / 3, (d_to_bottom - 1) / 3)
M = np.float32([[1, 0, x], [0, 1, y]])
shift_img = cv2.warpAffine(img, M, (img.shape[1], img.shape[0]))
for shape in shapes:
for p in shape['points']:
p[0] += x
p[1] += y
return shift_img, json_info
# 图像镜像翻转
def _filp_pic_bboxes(self, img, json_info):
h, w, _ = img.shape
sed = random.random()
if 0 < sed < 0.33:
flip_img = cv2.flip(img, 0) # _flip_x
inver = 0
elif 0.33 < sed < 0.66:
flip_img = cv2.flip(img, 1) # _flip_y
inver = 1
else:
flip_img = cv2.flip(img, -1) # flip_x_y
inver = -1
shapes = json_info['shapes']
for shape in shapes:
for p in shape['points']:
if inver == 0:
p[1] = h - p[1]
elif inver == 1:
p[0] = w - p[0]
elif inver == -1:
p[0] = w - p[0]
p[1] = h - p[1]
return flip_img, json_info
def dataAugment(self, img, dic_info):
change_num = 0
while change_num < 1:
if self.is_changeLight:
if random.random() > self.change_light_rate:
change_num += 1
img = self._changeLight(img)
if self.is_addNoise:
if random.random() < self.add_noise_rate:
change_num += 1
img = self._addNoise(img)
if self.is_random_point:
if random.random() < self.random_point:
change_num += 1
img = self._addRandPoint(img)
if self.is_shift_pic_bboxes:
if random.random() < self.shift_rate:
change_num += 1
img, dic_info = self._shift_pic_bboxes(img, dic_info)
if self.is_filp_pic_bboxes or 1:
if random.random() < self.flip_rate:
change_num += 1
img, bboxes = self._filp_pic_bboxes(img, dic_info)
return img, dic_info
class ToolHelper():
# 从json文件中提取原始标定的信息
def parse_json(self, path):
with open(path)as f:
json_data = json.load(f)
return json_data
# 对图片进行字符编码
def img2str(self, img_name):
with open(img_name, "rb")as f:
base64_data = str(base64.b64encode(f.read()))
match_pattern = re.compile(r'b\'(.*)\'')
base64_data = match_pattern.match(base64_data).group(1)
return base64_data
# 保存图片结果
def save_img(self, save_path, img):
cv2.imwrite(save_path, img)
# 保持json结果
def save_json(self, file_name, save_folder, dic_info):
with open(os.path.join(save_folder, file_name), 'w') as f:
json.dump(dic_info, f, indent=2)
if __name__ == '__main__':
need_aug_num = 5 #每张图片需要增强的次数
toolhelper = ToolHelper()
is_endwidth_dot = True #文件是否以.jpg或者png结尾
dataAug = DataAugmentForObjectDetection()
parser = argparse.ArgumentParser()
parser.add_argument('--source_img_json_path', type=str, default=r'/home/leeqianxi/YOLO/datasets/data/data')#需要更改的json地址
parser.add_argument('--save_img_json_path', type=str, default=r'/home/leeqianxi/YOLO/datasets/data/new_data')#改变后的json保存地址
args = parser.parse_args()
source_img_json_path = args.source_img_json_path # 图片和json文件原始位置
save_img_json_path = args.save_img_json_path # 图片增强结果保存文件
# 如果保存文件夹不存在就创建
if not os.path.exists(save_img_json_path):
os.mkdir(save_img_json_path)
for parent, _, files in os.walk(source_img_json_path):
files.sort() # 排序一下
for file in files:
if file.endswith('jpg') or file.endswith('png'):
cnt = 0
pic_path = os.path.join(parent, file)
json_path = os.path.join(parent, file[:-4] + '.json')
json_dic = toolhelper.parse_json(json_path)
# 如果图片是有后缀的
if is_endwidth_dot:
# 找到文件的最后名字
dot_index = file.rfind('.')
_file_prefix = file[:dot_index] # 文件名的前缀
_file_suffix = file[dot_index:] # 文件名的后缀
img = cv2.imread(pic_path)
while cnt < need_aug_num: # 继续增强
auged_img, json_info = dataAug.dataAugment(deepcopy(img), deepcopy(json_dic))
img_name = '{}_{}{}'.format(_file_prefix, cnt + 1, _file_suffix) # 图片保存的信息
img_save_path = os.path.join(save_img_json_path, img_name)
toolhelper.save_img(img_save_path, auged_img) # 保存增强图片
json_info['imagePath'] = img_name
base64_data = toolhelper.img2str(img_save_path)
json_info['imageData'] = base64_data
toolhelper.save_json('{}_{}.json'.format(_file_prefix, cnt + 1),
save_img_json_path, json_info) # 保存xml文件
print(img_name)
cnt += 1 # 继续增强下一张
3、数据集划分(训练集、测试集、验证集)
# 将图片和标注数据按比例切分为 训练集和测试集
import shutil
import random
import os
# 原始路径
image_original_path = "/home/leeqianxi/YOLO/ultralytics/pic/"
label_original_path = "/home/leeqianxi/YOLO/ultralytics/labels/"
cur_path = os.getcwd()
# 训练集路径
train_image_path = os.path.join(cur_path, "datasets/images/train/")
train_label_path = os.path.join(cur_path, "datasets/labels/train/")
# 验证集路径
val_image_path = os.path.join(cur_path, "datasets/images/val/")
val_label_path = os.path.join(cur_path, "datasets/labels/val/")
# 测试集路径
test_image_path = os.path.join(cur_path, "datasets/images/test/")
test_label_path = os.path.join(cur_path, "datasets/labels/test/")
# 训练集目录
list_train = os.path.join(cur_path, "datasets/train.txt")
list_val = os.path.join(cur_path, "datasets/val.txt")
list_test = os.path.join(cur_path, "datasets/test.txt")
train_percent = 0.8
val_percent = 0.2
test_percent = 0
def del_file(path):
for i in os.listdir(path):
file_data = path + "\\" + i
os.remove(file_data)
def mkdir():
if not os.path.exists(train_image_path):
os.makedirs(train_image_path)
else:
del_file(train_image_path)
if not os.path.exists(train_label_path):
os.makedirs(train_label_path)
else:
del_file(train_label_path)
if not os.path.exists(val_image_path):
os.makedirs(val_image_path)
else:
del_file(val_image_path)
if not os.path.exists(val_label_path):
os.makedirs(val_label_path)
else:
del_file(val_label_path)
if not os.path.exists(test_image_path):
os.makedirs(test_image_path)
else:
del_file(test_image_path)
if not os.path.exists(test_label_path):
os.makedirs(test_label_path)
else:
del_file(test_label_path)
def clearfile():
if os.path.exists(list_train):
os.remove(list_train)
if os.path.exists(list_val):
os.remove(list_val)
if os.path.exists(list_test):
os.remove(list_test)
def main():
mkdir()
clearfile()
file_train = open(list_train, 'w')
file_val = open(list_val, 'w')
file_test = open(list_test, 'w')
total_txt = os.listdir(label_original_path)
num_txt = len(total_txt)
list_all_txt = range(num_txt)
num_train = int(num_txt * train_percent)
num_val = int(num_txt * val_percent)
num_test = num_txt - num_train - num_val
train = random.sample(list_all_txt, num_train)
# train从list_all_txt取出num_train个元素
# 所以list_all_txt列表只剩下了这些元素
val_test = [i for i in list_all_txt if not i in train]
# 再从val_test取出num_val个元素,val_test剩下的元素就是test
val = random.sample(val_test, num_val)
print("训练集数目:{}, 验证集数目:{}, 测试集数目:{}".format(len(train), len(val), len(val_test) - len(val)))
for i in list_all_txt:
name = total_txt[i][:-4]
srcImage = image_original_path + name + '.png'
srcLabel = label_original_path + name + ".txt"
if i in train:
dst_train_Image = train_image_path + name + '.png'
dst_train_Label = train_label_path + name + '.txt'
shutil.copyfile(srcImage, dst_train_Image)
shutil.copyfile(srcLabel, dst_train_Label)
file_train.write(dst_train_Image + '\n')
elif i in val:
dst_val_Image = val_image_path + name + '.png'
dst_val_Label = val_label_path + name + '.txt'
shutil.copyfile(srcImage, dst_val_Image)
shutil.copyfile(srcLabel, dst_val_Label)
file_val.write(dst_val_Image + '\n')
else:
dst_test_Image = test_image_path + name + '.jpg'
dst_test_Label = test_label_path + name + '.txt'
shutil.copyfile(srcImage, dst_test_Image)
shutil.copyfile(srcLabel, dst_test_Label)
file_test.write(dst_test_Image + '\n')
file_train.close()
file_val.close()
file_test.close()
if __name__ == "__main__":
main()
4、图像裁剪为固定大小
from PIL import Image
import os
def crop_image(image_path, output_dir, crop_c, crop_size=(500, 500)):
# 打开原始图片
img = Image.open(image_path)
img_width, img_height = img.size
crop_width, crop_height = crop_size
# 确保输出目录存在
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# 计算可以裁剪的行数和列数
horizontal_crops = img_width // crop_width
vertical_crops = img_height // crop_height
# 裁剪并保存子图
crop_count = crop_c
for i in range(vertical_crops):
for j in range(horizontal_crops):
left = j * crop_width
upper = i * crop_height
right = left + crop_width
lower = upper + crop_height
# 裁剪图像
cropped_img = img.crop((left, upper, right, lower))
# 保存裁剪后的图像
output_path = os.path.join(output_dir, f"crop_{crop_count+1}.png")
cropped_img.save(output_path)
crop_count += 1
print(f"裁剪完成,共裁剪 {crop_count} 张图片。")
if __name__ == "__main__":
image_path = "img.png" # 输入图片的路径
output_dir = 'cropped_images' # 输出文件夹路径
crop_c = 0
crop_image(image_path, output_dir, crop_c)