当前位置: 首页 > article >正文

Elasticsearch-DSL高级查询操作

一、禁用元数据和过滤数据

1、禁用元数据_source

GET product/_search
{
  "_source": false, 
  "query": {
    "match_all": {}
  }
}

查询结果不显示元数据
禁用之前:

{
  "took" : 0,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 5,
      "relation" : "eq"
    },
    "max_score" : 1.0,
    "hits" : [
      {
        "_index" : "product",
        "_type" : "_doc",
        "_id" : "1",
        "_score" : 1.0,
        "_source" : {
          "name" : "xiaomi phone",
          "desc" : "shouji zhong de zhandouji",
          "date" : "2021-06-01",
          "price" : 3999,
          "tags" : [
            "xingjiabi",
            "fashao",
            "buka"
          ]
        }
      },
      {
        "_index" : "product",
        "_type" : "_doc",
        "_id" : "2",
        "_score" : 1.0,
        "_source" : {
          "name" : "xiaomi nfc phone",
          "desc" : "zhichi quangongneng nfc,shouji zhong de jianjiji",
          "date" : "2021-06-02",
          "price" : 4999,
          "tags" : [
            "xingjiabi",
            "fashao",
            "gongjiaoka"
          ]
        }
      },
      {
        "_index" : "product",
        "_type" : "_doc",
        "_id" : "3",
        "_score" : 1.0,
        "_source" : {
          "name" : "nfc phone",
          "desc" : "shouji zhong de hongzhaji",
          "date" : "2021-06-03",
          "price" : 2999,
          "tags" : [
            "xingjiabi",
            "fashao",
            "menjinka"
          ]
        }
      },
      {
        "_index" : "product",
        "_type" : "_doc",
        "_id" : "4",
        "_score" : 1.0,
        "_source" : {
          "name" : "xiaomi erji",
          "desc" : "erji zhong de huangmenji",
          "date" : "2021-04-15",
          "price" : 999,
          "tags" : [
            "low",
            "bufangshui",
            "yinzhicha"
          ]
        }
      },
      {
        "_index" : "product",
        "_type" : "_doc",
        "_id" : "5",
        "_score" : 1.0,
        "_source" : {
          "name" : "hongmi erji",
          "desc" : "erji zhong de kendeji 2021-06-01",
          "date" : "2021-04-16",
          "price" : 399,
          "tags" : [
            "lowbee",
            "xuhangduan",
            "zhiliangx"
          ]
        }
      }
    ]
  }
}

禁用之后:

{
  "took" : 0,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 5,
      "relation" : "eq"
    },
    "max_score" : 1.0,
    "hits" : [
      {
        "_index" : "product",
        "_type" : "_doc",
        "_id" : "1",
        "_score" : 1.0
      },
      {
        "_index" : "product",
        "_type" : "_doc",
        "_id" : "2",
        "_score" : 1.0
      },
      {
        "_index" : "product",
        "_type" : "_doc",
        "_id" : "3",
        "_score" : 1.0
      },
      {
        "_index" : "product",
        "_type" : "_doc",
        "_id" : "4",
        "_score" : 1.0
      },
      {
        "_index" : "product",
        "_type" : "_doc",
        "_id" : "5",
        "_score" : 1.0
      }
    ]
  }
}

2、数据源过滤器

Including:结果中返回哪些field
Excluding:结果中不要返回哪些field,不返回的field不代表不能通过该字段进行检索,因为元数据不存在不代表索引不存在

两种实现方式,
1:在创建索引的时候,mapping中配置;
这样配置映射,在查询的时候只显示name和price,不显示desc和tags

PUT product2
{
  "mappings": {
    "_source": {
      "includes": [
        "name",
        "price"
      ],
      "excludes": [
        "desc",
        "tags"
      ]
    }
  }
}

查看映射信息:GET product2/_mapping

{
  "product2" : {
    "mappings" : {
      "_source" : {
        "includes" : [
          "name",
          "price"
        ],
        "excludes" : [
          "desc",
          "tags"
        ]
      },
      "properties" : {
        "desc" : {
          "type" : "text",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "ignore_above" : 256
            }
          }
        },
        "name" : {
          "type" : "text",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "ignore_above" : 256
            }
          }
        },
        "owner" : {
          "properties" : {
            "age" : {
              "type" : "long"
            },
            "name" : {
              "type" : "text",
              "fields" : {
                "keyword" : {
                  "type" : "keyword",
                  "ignore_above" : 256
                }
              }
            },
            "sex" : {
              "type" : "text",
              "fields" : {
                "keyword" : {
                  "type" : "keyword",
                  "ignore_above" : 256
                }
              }
            }
          }
        },
        "price" : {
          "type" : "long"
        },
        "tags" : {
          "type" : "text",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "ignore_above" : 256
            }
          }
        }
      }
    }
  }
}

插入数据:

PUT /product2/_doc/1
{
  "owner":{
    "name":"zhangsan",
    "sex":"男",
    "age":18
  },
  "name": "hongmi erji",
  "desc": "erji zhong de kendeji",
  "price": 399,
  "tags": [
    "lowbee",
    "xuhangduan",
    "zhiliangx"
  ]
}

查询数据:
GET product2/_search
可以看到查询的结果没有上面excludes的数据

{
  "took" : 0,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 1,
      "relation" : "eq"
    },
    "max_score" : 1.0,
    "hits" : [
      {
        "_index" : "product2",
        "_type" : "_doc",
        "_id" : "1",
        "_score" : 1.0,
        "_source" : {
          "price" : 399,
          "name" : "hongmi erji"
        }
      }
    ]
  }
}

2:在写get search查询的时候指定;
基于上面的测试数据,先DELETE product2删除索引 再重新PUT /product2/_doc/1创建索引直接自动映射。
两种写法:
1.“_source”: 直接写展示的字段,
只展示owner.name和owner.sex

GET product2/_search
{
  "_source": ["owner.name","owner.sex"], 
  "query": {
    "match_all": {}
  }
}

结果:

{
  "took" : 0,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 1,
      "relation" : "eq"
    },
    "max_score" : 1.0,
    "hits" : [
      {
        "_index" : "product2",
        "_type" : "_doc",
        "_id" : "1",
        "_score" : 1.0,
        "_source" : {
          "owner" : {
            "sex" : "男",
            "name" : "zhangsan"
          }
        }
      }
    ]
  }
}

2.source里用includes和excludes

GET product2/_search
{
  "_source": {
    "includes": [
      "owner.*",
      "name"
    ],
    "excludes": [
      "name", 
      "desc",
      "price"
    ]
  },
  "query": {
    "match_all": {}
  }
}

结果:

{
  "took" : 0,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 1,
      "relation" : "eq"
    },
    "max_score" : 1.0,
    "hits" : [
      {
        "_index" : "product2",
        "_type" : "_doc",
        "_id" : "1",
        "_score" : 1.0,
        "_source" : {
          "owner" : {
            "sex" : "男",
            "name" : "zhangsan",
            "age" : 18
          }
        }
      }
    ]
  }
}

二、query string search

1.查看索引的结构
GET product/_mapping

2.查询索引的数据 默认10条
GET product/_search

3.查询索引的数据 限制条数20条
GET /product/_search?size=20

4.查询name分词后含有nfc的数据
GET /product/_search?q=name:nfc

5.查询前20条数据并且按照价格降序排列
GET /product/_search?from=0&size=20&sort=price:desc

6.createtime的数据类型是date,不会索引,所以这里是精准匹配createtime:2020-08-19的数据
GET /product/_search?q=createtime:2020-08-19

7.查询所有text分词后的词条中包含炮这个单词的
GET /product/_search?q=炮

三、全文检索-Fulltext query

查询模板:

GET index/_search
{
  "query": {
    "match": {
      "field": "searchContent"
    }
  }
}

造测试数据:
put mapping 就像关系型数据库的表结构:ddl语句

PUT product
{
  "mappings" : {
      "properties" : {
        "createtime" : {
          "type" : "date"
        },
        "date" : {
          "type" : "date"
        },
        "desc" : {
          "type" : "text",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "ignore_above" : 256
            }
          },
          "analyzer":"ik_max_word"
        },
        "lv" : {
          "type" : "text",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "ignore_above" : 256
            }
          }
        },
        "name" : {
          "type" : "text",
          "analyzer":"ik_max_word",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "ignore_above" : 256
            }
          }
        },
        "price" : {
          "type" : "long"
        },
        "tags" : {
          "type" : "text",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "ignore_above" : 256
            }
          }
        },
        "type" : {
          "type" : "text",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "ignore_above" : 256
            }
          }
        }
      }
    }
}

插入数据:就像关系型数据库的insert

PUT /product/_doc/1
{
    "name" : "小米手机",
    "desc" :  "手机中的战斗机",
    "price" :  3999,
    "lv":"旗舰机",
    "type":"手机",
    "createtime":"2020-10-01T08:00:00Z",
    "tags": [ "性价比", "发烧", "不卡顿" ]
}
PUT /product/_doc/2
{
    "name" : "小米NFC手机",
    "desc" :  "支持全功能NFC,手机中的滑翔机",
    "price" :  4999,
        "lv":"旗舰机",
    "type":"手机",
    "createtime":"2020-05-21T08:00:00Z",
    "tags": [ "性价比", "发烧", "公交卡" ]
}
PUT /product/_doc/3
{
    "name" : "NFC手机",
    "desc" :  "手机中的轰炸机",
    "price" :  2999,
        "lv":"高端机",
    "type":"手机",
    "createtime":"2020-06-20",
    "tags": [ "性价比", "快充", "门禁卡" ]
}
PUT /product/_doc/4
{
    "name" : "小米耳机",
    "desc" :  "耳机中的黄焖鸡",
    "price" :  999,
        "lv":"百元机",
    "type":"耳机",
    "createtime":"2020-06-23",
    "tags": [ "降噪", "防水", "蓝牙" ]
}
PUT /product/_doc/5
{
    "name" : "红米耳机",
    "desc" :  "耳机中的肯德基",
    "price" :  399,
    "type":"耳机",
        "lv":"百元机",
    "createtime":"2020-07-20",
    "tags": [ "防火", "低音炮", "听声辨位" ]
}
PUT /product/_doc/6
{
    "name" : "小米手机10",
    "desc" :  "充电贼快掉电更快,超级无敌望远镜,高刷电竞屏",
    "price" :  "",
        "lv":"旗舰机",
    "type":"手机",
    "createtime":"2020-07-27",
    "tags": [ "120HZ刷新率", "120W快充", "120倍变焦" ]
}
PUT /product/_doc/7
{
    "name" : "挨炮 SE2",
    "desc" :  "除了CPU,一无是处",
    "price" :  "3299",
        "lv":"旗舰机",
    "type":"手机",
    "createtime":"2020-07-21",
    "tags": [ "割韭菜", "割韭菜", "割新韭菜" ]
}
PUT /product/_doc/8
{
    "name" : "XS Max",
    "desc" :  "听说要出新款12手机了,终于可以换掉手中的4S了",
    "price" :  4399,
        "lv":"旗舰机",
    "type":"手机",
    "createtime":"2020-08-19",
    "tags": [ "5V1A", "4G全网通", "大" ]
}
PUT /product/_doc/9
{
    "name" : "小米电视",
    "desc" :  "70寸性价比只选,不要一万八,要不要八千八,只要两千九百九十八",
    "price" :  2998,
        "lv":"高端机",
    "type":"耳机",
    "createtime":"2020-08-16",
    "tags": [ "巨馍", "家庭影院", "游戏" ]
}
PUT /product/_doc/10
{
    "name" : "红米电视",
    "desc" :  "我比上边那个更划算,我也2998,我也70寸,但是我更好看",
    "price" :  2999,
    "type":"电视",
        "lv":"高端机",
    "createtime":"2020-08-28",
    "tags": [ "大片", "蓝光8K", "超薄" ]
}
PUT /product/_doc/11
{
  "name": "红米电视",
  "desc": "我比上边那个更划算,我也2998,我也70寸,但是我更好看",
  "price": 2998,
  "type": "电视",
  "lv": "高端机",
  "createtime": "2020-08-28",
  "tags": [
    "大片",
    "蓝光8K",
    "超薄"
  ]
}

在这里插入图片描述

在构造mapping映射的时候,对text类型的字段指定了"analyzer":"ik_max_word"分词器,这里用的是IK分词器,插入数据会对该字段进行分词,建立倒排索引。*“type” : “keyword”*是用来后续精准查询的时候通过field.keyword来精准匹配。

1、query->match->text类型字段
进行全文搜索,会对查询的文本进行分词。
query match 这个name会被分词 name是txt类型 会被分词 所以搜索条件被分词后会和这个查询字段的词项进行匹配 匹配到的都返回
查询条件和索引中的字段数据都会进行分词 后 进行匹配 按照score返回

GET product/_search?_source=false
{
  "query": {
    "match": {
      "name": "NFC手机"
    }
  }
}

query->match->text.keyword类型字段
name是text类型字段,name.keyword做为查询条件不会进行分词,直接和索引数据中的name进行匹配,id为3的数据可以查询匹配。

GET product/_search
{
  "query": {
    "match": {
      "name.keyword": "NFC手机"
    }
  }
}

2、query->match_all查询全部数据
默认查询返回10条,这里指定20条,禁用元数据不返回太多

GET product/_search?size=20&_source=false
{
  "query": {
    "match_all": {
      
    }
  }
}

3、query->multi_match 多个字段匹配
多个字段匹配 name或者desc 包含 query中的任意一个就行,name或者desc分词后的数据包含手机就返回

GET product/_search?size=20&_source=false
{
  "query": {
    "multi_match": {
      "query": "手机",
      "fields": ["name","desc"]
    }
  }
}

4、query->match_phrase 短语查询
搜索与指定短语匹配的文档,保留短语中词语的相对位置。
name的分词器是ik_max_word,看下name会被分为哪些词

GET _analyze
{
  "analyzer": "ik_max_word",
  "text": "小米NFC手机"
}
结果:
{
  "tokens" : [
    {
      "token" : "小米",
      "start_offset" : 0,
      "end_offset" : 2,
      "type" : "CN_WORD",
      "position" : 0
    },
    {
      "token" : "nfc",
      "start_offset" : 2,
      "end_offset" : 5,
      "type" : "ENGLISH",
      "position" : 1
    },
    {
      "token" : "手机",
      "start_offset" : 5,
      "end_offset" : 7,
      "type" : "CN_WORD",
      "position" : 2
    }
  ]
}

GET _analyze
{
  "analyzer": "ik_max_word",
  "text": "NFC手机"
}

结果:
{
  "tokens" : [
    {
      "token" : "nfc",
      "start_offset" : 0,
      "end_offset" : 3,
      "type" : "ENGLISH",
      "position" : 0
    },
    {
      "token" : "手机",
      "start_offset" : 3,
      "end_offset" : 5,
      "type" : "CN_WORD",
      "position" : 1
    }
  ]
}

短语查询 索引里面name字段要有NFC手机这个短语 顺序不能颠倒,NFC手机会被分为nfc 手机
分词后能和索引字段name分词后的数据匹配到且顺序不乱 就可以做为结果展示

GET product/_search
{
  "query": {
    "match_phrase": {
      "name": "NFC手机"
    }
  }
}

结果:

{
  "took" : 5,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 2,
      "relation" : "eq"
    },
    "max_score" : 2.8616219,
    "hits" : [
      {
        "_index" : "product",
        "_type" : "_doc",
        "_id" : "3",
        "_score" : 2.8616219
      },
      {
        "_index" : "product",
        "_type" : "_doc",
        "_id" : "2",
        "_score" : 2.4492486
      }
    ]
  }
}

5、Term 对字段进行精确匹配。

GET /my_index/_search
{
  "query": {  // "query"定义查询条件
    "term": { // "term"查询执行精确匹配
      "field_name": "exact_value" 
      // "field_name"是要匹配的字段; "exact_value"是精确查询的精确值,通常用于keyword标签或其他不分析的文本字段
    }
  }
}

6、Bool 多条件组合查询
组合多个查询条件,支持must(必须)、should(至少一个)和must_not(必须不)关键字。
match支持全文检索,对查询条件分词然后匹配索引中的分词后的词项
term精准查询,不会分词检索,和非text类型或者text.keyword使用
range gte大于等于lte小于等于
minimum_should_match should默认至少满足一个,这里表示至少满足的数量自己控制

GET product/_search
{
  "query": {
    "bool": {
      "must": [
        {
          "match": {
            "name": "手机"
          }
        },
        {
          "match": {
            "desc": "手机"
          }
        }
      ],
      "should": [
        {
          "term": {
            "type.keyword": {
              "value": "手机"
            }
          }
        },
        {
          "range": {
            "price": {
              "gte": 100,
              "lte": 300
            }
          }
        }
      ],
      "minimum_should_match": 2,
      "must_not": [
        {
          "range": {
            "price": {
              "gte": 2999,
              "lte": 4500
            }
          }
        }
      ]
    }
  }
}

filter:条件过滤查询,过滤满足条件的数据 不计算相关度得分

GET product/_search
{
  "query": {
    "bool": {
      "filter": [
        {
          "term": {
            "type.keyword": {
              "value": "手机"
            }
          }
        }
      ]
    }
  }
}

7、terms
索引中tags含有性价比或者大片任意一个就行

GET product/_search
{
  "query": {
    "terms": {
      "tags.keyword": [ "性价比", "大片" ],
      "boost": 2.0
    }
  }
}

8、constant_score 意为固定得分
避免算分 提高性能

GET product/_search
{
  "query": {
    "constant_score": {
      "filter": {
        "term": {
          "type.keyword": "手机"
        }
      },
      "boost": 1.2
    }
  }
}

9、(must或者filter)和should组合 这时should满足0也行 如果should单用 要至少满足一个

GET product/_search
{

  "query": {
    "bool": {
      "filter": [
        {
          "range": {
            "price": {
              "gte": 10,
              "lte": 4000
            }
          }
        }
      ],"should": [
        {
          "match": {
            "name": "哈哈哈哈哈哈哈哈哈哈哈哈"
          }
        },{
          "range": {
            "price": {
              "gte": 4001,
              "lte": 9000
            }
          }
        }
      ],
      "minimum_should_match": 1
    }
  }
}

minimum_should_match不设置或者设置为0,即使should两个条件一个都不符合也可以查出数据


http://www.kler.cn/a/442528.html

相关文章:

  • mysql-5.7.18保姆级详细安装教程
  • jenkins-系统配置概述
  • 基于Python机器学习、深度学习技术提升气象、海洋、水文领域实践应用-以ENSO预测为例讲解
  • MC1.12.2 macOS高清修复OptiFine运行崩溃
  • Vue2+OpenLayers添加/删除点、点击事件功能实现(提供Gitee源码)
  • 【EI 会议征稿】第四届材料工程与应用力学国际学术会议(ICMEAAE 2025)
  • NoSQL大数据存储技术测试(6)图数据库Neo4J
  • C++入门小馆:初识sort函数
  • spring学习(spring-bean实例化(实现FactoryBean规范)(延迟实例化bean))
  • java error(2)保存时间带时分秒,回显时分秒变成00:00:00
  • shared_ptr 智能指针
  • HDFS常用命令
  • IIS服务器部署C# WebApi程序,客户端PUT,DELETE请求无法执行
  • vue3 + ts + element-plus 表格中的input按回车聚焦到下一行
  • 电商大数据的几种获取渠道分享!
  • 数据可视化-4. 漏斗图
  • 国内主流数据库介绍及技术分享
  • vue iframe进行父子页面通信并切换URL
  • 基于Streamlit和OpenAI大模型的Chatbot App支持图片的多模态输入
  • 使用 Copilot 增强创造力:Mighty Media 的卓越数字化之旅
  • 【论文复刻】2021-2012年环境规制影响企业融资约束吗—基于新《环保法》的准自然实验(C刊《证券市场导报》)
  • RPA 在促销活动自动化处理中的创新应用
  • CSS3:重塑网页设计的新力量
  • YOLO目标检测算法
  • 【DevOps工具篇】Gitlab Runner设置(使用Docker in docker作为Runner)
  • LAPACK 程序 SSYEVD 的计算特征值的应用实例 C/Fortran