当前位置: 首页 > article >正文

SPL06 基于stm32F103 HAL库驱动(软件模拟IIC)

talk is cheap, show you my code

SPL06.c

#include "SPL06.h"

//*************全局变量*************//
Factor_List* b_list;                          			//存储过采样率对应的系数KP,KT
COEF_ValueStruct Coefficient = { 0 };								//存储校准系数
TEMP_InitTypedef TEMP_InitStructure = { 0 };        //温度测量初始化配置结构体
PSR_InitTypedef PSR_InitStructure = { 0 };          //大气压强测量初始化配置结构体

//*************1.初始化相关函数*************//
//*************1.1 链表初始化相关函数*******//
/**
 * @name    Factor_List* initList(void)
 * @brief   初始化链表头节点,将头节点也利用起来,存储信息
 * @param   [NONE]
 * @return  [p] 返回创建的链表头节点地址
 */
Factor_List* initList(void)
{
    Factor_List *p = (Factor_List*)malloc(sizeof(Factor_List));
    p->OverSamplingRate = _SINGLE_OVERSAMPLING;
    p->FACTOR = _SINGLE_SCALE_FACTOR;
    p->next = NULL;

    if (p == NULL) {
            // 处理内存分配失败的情况
            return NULL;
        }

    return p;
}

/**
 * @name    Factor_List* insertTail(Factor_List *l, uint8_t val, uint32_t Factor)
 * @brief   向链表的末尾添加一个节点,即尾插法
 * @param   [Factor_List *list] 链表的起始节点
 *          [uint8_t val] 链表OverSamplingRate部分的值,对应过采样率的寄存器值
 *          [uint32_t Factor] 过采样率对应的比例因子
 * @return  尾节点指针,由于数据量只有八个,且链表添加数据之后固定,为了简化代码,没有利用尾节点指针
 */
Factor_List* insertTail(Factor_List *l, uint8_t val, uint32_t Factor)
{
    //先创建一个新节点
    Factor_List *p = (Factor_List*)malloc(sizeof(Factor_List));
    p->OverSamplingRate = val;
    p->FACTOR = Factor;
    p->next = NULL;

    while(l->next != NULL) l = l->next;
    l->next = p;

    return p;
}

/**
 * @name    void Init_FactorList(void)
 * @brief   初始化链表的所有数据,将过采样率及其对应的比例因子插入到链表中
 * @param   [NONE]
 * @return  [NONE]
 */
void Init_FactorList(void)
{
    b_list = initList(); //_SINGLE_OVERSAMPLING的数据已经放入

    insertTail(b_list, _2TIMES_OVERSAMPLING, _2TIMES_SCALE_FACTOR);
    insertTail(b_list, _4TIMES_OVERSAMPLING, _4TIMES_SCALE_FACTOR);
    insertTail(b_list, _8TIMES_OVERSAMPLING, _8TIMES_SCALE_FACTOR);
    insertTail(b_list, _16TIMES_OVERSAMPLING, _16TIMES_SCALE_FACTOR);
    insertTail(b_list, _32TIMES_OVERSAMPLING, _32TIMES_SCALE_FACTOR);
    insertTail(b_list, _64TIMES_OVERSAMPLING, _64TIMES_SCALE_FACTOR);
    insertTail(b_list, _128TIMES_OVERSAMPLING, _128TIMES_SCALE_FACTOR);
}

/**
 * @brief   根据对应的过采样率寻找对应的比例因子
 * @param   [Factor_List *list] 要查找的链表
 *          [val] 用于查询的过采样率
 * @return  返回的比例因子数值
 */
uint32_t FindFactor(Factor_List* l, uint8_t val)
{
    while(l->OverSamplingRate != val)
    {
        l = l->next;
    }
    return l->FACTOR;
}


//*************1.2 SPL06初始化相关函数******//
/**
 * @name    uint8_t SPL06_Init(void)
 * @brief   SPL06初始化,包含采样模式,温度采样配置,大气压强采样配置,可以通过修改对应结构体成员来修改配置
 * @return  0   配置成功
 *  		1	I2C通讯异常
 *          2   配置采样模式失败,总线无应答
 *          3   配置大气压强采样失败,总线无应答
 *          4   配置温度采样失败,总线无应答
 *          5		获取校正系数失败,可能是校正系数没有准备好,也可能是I2C通讯异常
 */
uint8_t SPL06_Init(void)
{
	//1. 拉高SCL、SDA确保起始条件能够被正确发送
	MyI2C_W_SCL(1);
	MyI2C_W_SDA(1);
	
	//2. 进行读写校验,验证I2C通讯
	uint8_t write_buf[2] = {0x11, 0x13};
	uint8_t read_buf[2];
	MyI2C_WriteMultiRegister(SPL06_ADDRESS, PRS_CFG, 2, write_buf);
	MyI2C_ReadMultiRegister(SPL06_ADDRESS, PRS_CFG, 2, read_buf);
	for(uint8_t i = 0; i < 2; i++)
	{
		if(read_buf[i] != write_buf[i])
		{
			return 1;
		}
	}
	
	//3. 确认I2C通信正常后,软复位芯片
	MyI2C_WriteRegister(RESET, 0x89);
	for(uint16_t i=0; i<1000; i++)
	{
		for(uint16_t j=0; j<2000; j++);
	}

	//4. 配置采样模式:连续采样大气压强和温度
	if(SPL_OperatingModeInit(STRAT_CONTINUOUS_PSR_TEMP))
			return 2;
	
	//5. 配置大气压强采样频率,过采样率
	PSR_InitStructure.MEASURE_RATE = _4HZ_MEASUREMENT;							//采样频率
	PSR_InitStructure.OVER_SAMPLING_TIMES = _64TIMES_OVERSAMPLING;	//过采样率
	if(SPL06_PSRInitStruct(&PSR_InitStructure))
			return 3;
	
	//6. 配置温度采样频率,过采样率
	TEMP_InitStructure.MEASURE_RATE = _4HZ_MEASUREMENT;							//采样频率
	TEMP_InitStructure.OVER_SAMPLING_TIMES = _SINGLE_OVERSAMPLING;	//过采样率
	TEMP_InitStructure.SENSOR_SOURCE = _EXTERNAL_SENSOR;
	if(SPL06_TEMPInitStruct(&TEMP_InitStructure))
			return 2;

    //7. 当大气压强过采样率>8时,必须启用P Shift
	MyI2C_WriteRegister(CFG_REG, 0x04);		//	启动P位移,0x04,禁用FIFO  0x06,启用FIFO
	
    //8. 初始化KP、KT链表
	Init_FactorList();
	
    //9. 读取矫正系数,保存在Coefficient结构体中
	if(GetCoefVal(&Coefficient) != 0)
			return 5;
	
    //10. 正常返回0
	return 0;
}


/**
 * @name    uint8_t SPL06_PSRInitStruct(PSR_InitTypedef* PSR_InitStructure)
 * @brief   配置大气压强测量控制寄存器,可配置采样频率,过采样率
 * @param   [PSR_InitStructure] 传入的结构体指针,包含配置信息
 * @return  0   成功
 *          1   失败
 */
uint8_t SPL06_PSRInitStruct(PSR_InitTypedef* PSR_InitStructure)
{
    uint8_t config = 0x00;
    config = PSR_InitStructure->MEASURE_RATE + PSR_InitStructure->OVER_SAMPLING_TIMES;

		if(MyI2C_WriteRegister(PRS_CFG, (uint8_t)config))
		{
			return 1;
		}

    return 0;
}

/**
 * @name    uint8_t SPL06_TEMPInitStruct(TEMP_InitTypedef* TEMP_InitStructure)
 * @brief   配置温度测量控制寄存器,可配置采样频率,过采样率
 * @param   [TEMP_InitStructure] 传入的结构体指针,包含配置信息
 * @return  0   成功
 *          1   失败
 */
uint8_t SPL06_TEMPInitStruct(TEMP_InitTypedef* TEMP_InitStructure)
{
    uint8_t config = 0x00;
    config = TEMP_InitStructure->SENSOR_SOURCE + TEMP_InitStructure->MEASURE_RATE \
                                        + TEMP_InitStructure->OVER_SAMPLING_TIMES;
		
		if(MyI2C_WriteRegister(TMP_CFG, config))
		{
			return 1;
		}
	
    return 0;
}

/**
 * @name    uint8_t SPL_OperatingModeInit(MeasureModeConfig config)
 * @brief   设置SPL06的测量模式,可以在@<! MeasureModeConfig >中查看可配置的测量模式
 * @param   [config] 具体见@<! MeasureModeConfig >
 * @return  0   成功
 *          1   失败
 */
uint8_t SPL_OperatingModeInit(MeasureModeConfig config)
{
		if(MyI2C_WriteRegister(MEAS_CFG, config))
		{
			return 1;
		}

    return 0;
}

/**
 * @name    uint8_t COEF_CheckStatus(void)
 * @brief   查询SPL06的矫正系数是否可读
 * @return  0   可读
 *          1   不可读
 */
uint8_t COEF_CheckStatus(void)
{
    if((MyI2C_ReadRegister(MEAS_CFG) & 0x80) == 0x80)               //如果bit[7]COFE_RDY为高,说明矫正系数可读
    {
        return 0;
    }

    return 1;
}

/**
 * @brief 	读取SPL06的ID
 * @param 	[void]
 * @return 	[ID] ID默认值
 */
uint8_t SPL06_ReadID(void)
{
    return MyI2C_ReadRegister(ID);
}

/**
 * @brief 获得出厂校准系数
 * @param COEF_ValueStruct* COEF,系数结构体指针,用于存储系数
 * @return 0 获取成功
 *         1 获取失败,读取过程出错,但矫正系数本身可以被读
 *         2 获取失败,矫正系数没有准备就绪
 */
uint8_t GetCoefVal(COEF_ValueStruct* COEF)
{
    uint8_t buffer[18] = { 0 };
    if(COEF_CheckStatus() == 0)
    {
        //开始读取矫正系数
        if(MyI2C_ReadMultiRegister(SPL06_ADDRESS, COEF_C0, 18, buffer))
        {
            return 1;
        }
    }else{
        return 2;
    }

    //将校正系数正确存放到变量中
    COEF->C0 = COEF->raw_C0 = (uint16_t)((buffer[0] << 4) | ((buffer[1] & 0xF0) >> 4)); 											// 12-bit value
		COEF->C1 = COEF->raw_C1 = (uint16_t)(((buffer[1] & 0x0F) << 8) | buffer[2]); 															// 12-bit value
    COEF->C00 = COEF->raw_C00 = (uint32_t)((buffer[3] << 12) | (buffer[4] << 4) | ((buffer[5] & 0xF0) >> 4)); // 20-bit value
		COEF->C10 = COEF->raw_C10 = (uint32_t)((buffer[5] & 0x0F) << 16 | buffer[6] << 8 | buffer[7]); // 20-bit value
    COEF->C01 = COEF->raw_C01 = (uint16_t)(buffer[8] << 8 | buffer[9]);
		COEF->C11 = COEF->raw_C11 = (uint16_t)(buffer[10] << 8 | buffer[11]);
		COEF->C20 = COEF->raw_C20 = (uint16_t)(buffer[12] << 8 | buffer[13]);
		COEF->C21 = COEF->raw_C21 = (uint16_t)(buffer[14] << 8 | buffer[15]);
		COEF->C30 = COEF->raw_C30 = (uint16_t)(buffer[16] << 8 | buffer[17]);

    //这些数据都是以补码形式存放,如果为负数,应该将其转换
    if(COEF->raw_C0 & 0x800)    COEF->C0 = (COEF->raw_C0 - Total_Number_12);
    if(COEF->raw_C1 & 0x800)    COEF->C1 = (COEF->raw_C1 - Total_Number_12);

    if(COEF->raw_C00 & 0x80000) COEF->C00 = COEF->raw_C00 - Total_Number_20;
    if(COEF->raw_C10 & 0x80000) COEF->C10 = COEF->raw_C10 - Total_Number_20;

    if(COEF->raw_C01 & 0x8000)  COEF->C01 = COEF->raw_C01 - Total_Number_16;
    if(COEF->raw_C11 & 0x8000)  COEF->C11 = COEF->raw_C11 - Total_Number_16;
    if(COEF->raw_C20 & 0x8000)  COEF->C20 = COEF->raw_C20 - Total_Number_16;
    if(COEF->raw_C21 & 0x8000)  COEF->C21 = COEF->raw_C21 - Total_Number_16;
    if(COEF->raw_C30 & 0x8000)  COEF->C30 = COEF->raw_C30 - Total_Number_16;
    
    return 0;
}

/**
 * @brief 获取经过出厂校准系数补偿过的大气压强值,温度值
* @param 	[float* baroValue] 接收大气压强值的浮点数,单位: 百帕(hpa)
*        	[float* tempValue] 接收温度值的浮点数,单位: 摄氏度(℃)
 *        [COEF_ValueStruct* COEF] 校准系数结构体指针
 * @return 0 获取成功
 *         1 获取失败,I2C通讯异常
 */
uint8_t GetCompensatedVal(float* baroValue, float* tempValue, COEF_ValueStruct* COEF)
{
    //1. 获取raw数据
    uint8_t arr_temp[6] = { 0 };
    uint32_t rawBaroValue = 0, rawTempValue = 0;
		int32_t Baro, Temp;
		
    if(MyI2C_ReadMultiRegister(SPL06_ADDRESS, PSR_B2, 6, arr_temp))//一次性读取大气压强值、温度值的6个寄存器
    {
        return 1;
    }
		
    rawBaroValue = (arr_temp[0] << 16) + (arr_temp[1] << 8) + (arr_temp[2]);          //24bit有符号数
    rawTempValue = (arr_temp[3] << 16) + (arr_temp[4] << 8) + (arr_temp[5]);
	
		Baro = rawBaroValue & 0x00FFFFFF;
		Temp = rawTempValue & 0x00FFFFFF;
		
    if(rawBaroValue & 0x80000) Baro = rawBaroValue - Total_Number_24;  //如果最高位为1,转化为负数
    if(rawTempValue & 0x80000) Temp = rawTempValue - Total_Number_24;

    //2. 根据过采样率选择对应的KP,KT系数
    volatile uint32_t KP, KT;
    float Praw_Sc, Traw_Sc;
    KP = FindFactor(b_list, PSR_InitStructure.OVER_SAMPLING_TIMES);   //在初始化的链表中寻找对应的比例因子
    KT = FindFactor(b_list, TEMP_InitStructure.OVER_SAMPLING_TIMES);
		
    //3. 带入公式求得校准后的数据
    Praw_Sc = (float)Baro / KP;
    Traw_Sc = (float)Temp / KT;

    //4. 将数据传递到地址中
    *baroValue = COEF->C00 + Praw_Sc * (COEF->C10 + Praw_Sc * ( COEF->C20 + Praw_Sc * COEF->C30)) + Traw_Sc * COEF->C01 + Traw_Sc * Praw_Sc * (COEF->C11 + Praw_Sc * COEF->C21);
		
	*baroValue /= 100; //将压强值转化为hpa
                
    *tempValue = COEF->C0 * 0.5f + COEF->C1 * Traw_Sc;

    return 0;
}

/**
 * @brief 将大气压强值转化为高度值
 * @param [float P] 大气压强值,单位hpa
 * @return -1 输入大气压强值错误
 *         Altitude 单精度浮点数,返回海拔高度值,单位m
 */
float getAltitude(float P)
{
		P *= 100;
    float Altitude;
    if(P > 30000 && P < 200000)
    {
        Altitude = 44330.0f * (1.0f - (float)pow(P / P0, 1.0/5.255));
    }else{
        return 0;
    }
    
    return Altitude;
}

//*************快速排序算法*************//
void swap(float* a, float* b) {
    float t = *a;
    *a = *b;
    *b = t;
}

int partition(float arr[], int low, int high) {
    float pivot = arr[high];    // 选择最后一个元素作为基准
    int i = (low - 1);          // 小于基准的元素的索引

    for (int j = low; j < high; j++) {
        // 如果当前元素小于或等于基准
        if (arr[j] <= pivot) {
            i++;    // 增加小于基准的元素的索引
            swap(&arr[i], &arr[j]);
        }
    }
    swap(&arr[i + 1], &arr[high]);
    return (i + 1);
}

void quickSort(float arr[], int low, int high) {
    if (low < high) {
        // pi 是 partitioning index, arr[p] 现在位于正确位置
        int pi = partition(arr, low, high);

        // 分别对基准左右两边的子数组进行递归排序
        quickSort(arr, low, pi - 1);
        quickSort(arr, pi + 1, high);
    }
}


/**
 * @name    float AltitudeFilter(float newAltitude)
 * @brief   对计算得到校准后的高度值进一步滤波,采用快速排序+中值均值滤波
 * @param   [float newAltitude] 采集到的新数据
 * @return  [filterdAltitude]  滤波后的数据
 */
float AltitudeFilter(float newAltitude)
{
		static float AltitudeRawArray[FILTER_MAX_SIZE] = { 0 };							//原始数据
		static float AltitudeBuffer[FILTER_MAX_SIZE] = { 0 };  							//排序缓冲数组
    float filterdAltitude;                                      //滤波后数据
    
    //把原始数组里的数据前移
    for(uint8_t i = 0; i < FILTER_MAX_SIZE - 1; i++)
    {
        AltitudeRawArray[i] = AltitudeRawArray[i + 1];
    }
    //更新数据
    AltitudeRawArray[FILTER_MAX_SIZE - 1] = newAltitude;
    
    //将更新的数据拷贝给缓冲排序数组
    memcpy(&AltitudeBuffer, &AltitudeRawArray, sizeof(AltitudeRawArray));

    //快速排序
    quickSort(AltitudeBuffer, 0, FILTER_MAX_SIZE - 1);

    //掐头去尾取中间,去掉前三分之一和后三分之一,取中间平均值
    float bufferSum = 0;
    for(uint8_t i = FILTER_MAX_SIZE / 3; i < FILTER_MAX_SIZE * 2/3; i++)
    {
        bufferSum += AltitudeBuffer[i];
    }
    filterdAltitude = bufferSum / (FILTER_MAX_SIZE / 3);

    return filterdAltitude;
}

SPL06.h

#ifndef __SPL06_H
#define __SPL06_H

#include <stdlib.h>
#include <string.h>
#include <math.h>

#include "MyI2C.h"

//************自然值************//
#define P0 101325.0f        //标准大气压强值

//************用于负数二补数转换************//
#define Total_Number_24 16777216.0
#define Total_Number_20 1048576.0
#define Total_Number_16 65536.0
#define Total_Number_12 4096.0

//************REGISTER ADDRESS************//
//仅列出了部分寄存器组,通过读写多个寄存器实现对所有寄存器的操作,如果需要更多的寄存器请参考datasheet
#define     PSR_B2      0x00
#define     PSR_B1      0x01
#define     PSR_B0      0x02
#define     TMP_B2      0x03
#define     TMP_B1      0x04
#define     TMP_B0      0x05
#define     PRS_CFG     0x06
#define     TMP_CFG     0x07
#define     MEAS_CFG    0x08
#define     CFG_REG     0x09
#define     INT_STS     0x0A
#define     FIFO_STS    0x0B
#define     RESET       0x0C
#define     ID          0x0D
#define     COEF_C0     0x10
#define     COEF_C00    0x13
#define     COEF_C10    0x17
#define     COEF_C01    0x18
#define     COEF_C11    0x1A
#define     COEF_C20    0x1C
#define     COEF_C21    0x1E
#define     COEF_C30    0x20

//************SPL06 I2C ADDRESS INITIALIZE************//
#define SPL06_ADDRESS   0x77       //SDO High -> 0x77, SDO Low -> 0x76
#define SPL06_ADDRESS_W (SPL06_ADDRESS<<1)|0x00
#define SPL06_ADDRESS_R (SPL06_ADDRESS<<1)|0x01


//************PRESSSURE & TEMPERATURE CONFIG************//
//bit[7] only accessiable for temperature config
#define     _INTERNAL_SENSOR        0x00
#define     _EXTERNAL_SENSOR        0x80
//bit[6:4] MEASURE_RATE for all
#define     _1HZ_MEASUREMENT        0x00
#define     _2HZ_MEASUREMENT        0x10
#define     _4HZ_MEASUREMENT        0x20
#define     _8HZ_MEASUREMENT        0x30
#define     _16HZ_MEASUREMENT       0x40
#define     _32HZ_MEASUREMENT       0x50
#define     _64HZ_MEASUREMENT       0x60
#define     _128HZ_MEASUREMENT      0x70
//bit[3:0] OVER_SAMPLING_TIMES for all
#define     _SINGLE_OVERSAMPLING    0x00
#define     _2TIMES_OVERSAMPLING    0x01
#define     _4TIMES_OVERSAMPLING    0x02
#define     _8TIMES_OVERSAMPLING    0x03
#define     _16TIMES_OVERSAMPLING   0x04
#define     _32TIMES_OVERSAMPLING   0x05
#define     _64TIMES_OVERSAMPLING   0x06
#define     _128TIMES_OVERSAMPLING  0x07

//************SCALE FACTOR************//
//存放KP、KT的数据集合,该数值与过采样率(OVER_SAMPLING_TIMES)相关
#define _SINGLE_SCALE_FACTOR    524288					//单次过采样对应scaleFactor
#define _2TIMES_SCALE_FACTOR    1572864					//2次过采样对应scaleFactor
#define _4TIMES_SCALE_FACTOR    3670016 				//4次过采样对应scaleFactor
#define _8TIMES_SCALE_FACTOR    7864320 				//8次过采样对应scaleFactor
#define _16TIMES_SCALE_FACTOR   253952					//16次过采样对应scaleFactor
#define _32TIMES_SCALE_FACTOR   516096					//32次过采样对应scaleFactor
#define _64TIMES_SCALE_FACTOR   1040384					//64次过采样对应scaleFactor
#define _128TIMES_SCALE_FACTOR  2088960					//128次过采样对应scaleFactor

//************滤波最大缓冲数************//
#define FILTER_MAX_SIZE 32

typedef struct 
{
    uint8_t MEASURE_RATE;               //see @MEASURE_RATE
    uint8_t OVER_SAMPLING_TIMES;        //see @OVER_SAMPLING_TIMES
} PSR_InitTypedef;

typedef struct
{
    uint8_t MEASURE_RATE;
    uint8_t OVER_SAMPLING_TIMES;
    uint8_t SENSOR_SOURCE;
} TEMP_InitTypedef;

//校准系数: coefficient
typedef struct
{
		uint16_t raw_C0;
		uint16_t raw_C1;
    uint32_t raw_C00;
    uint32_t raw_C10;
    uint16_t raw_C01;
    uint16_t raw_C11;
    uint16_t raw_C20;
    uint16_t raw_C21;
    uint16_t raw_C30;
	
    int16_t C0;
    int16_t C1;
    int32_t C00;
    int32_t C10;
    int16_t C01;
    int16_t C11;
    int16_t C20;
    int16_t C21;
    int16_t C30;

} COEF_ValueStruct;

//传感器测量模式
typedef enum
{
    STANDBY = 0x00,                     //休眠
    START_SINGLE_PSR,                   //单次转换大气压强值
    START_SINGLE_TEMP,                  //单词转换温度值
    STRAT_CONTINUOUS_PSR = 0x05,        //连续转换大气压强值
    STRAT_CONTINUOUS_TEMP,              //连续转换温度值
    STRAT_CONTINUOUS_PSR_TEMP = 0x07,   //连续转换大气压强值和温度值
} MeasureModeConfig;


//定义过采样率对应的比例系数链表
typedef struct node
{
    /* data */
    uint8_t OverSamplingRate;
    uint32_t FACTOR;
    struct node* next;
} Factor_List;

extern Factor_List* b_list;													//声明比例系数链表存在
extern COEF_ValueStruct Coefficient;								//声明校准系数存在
extern TEMP_InitTypedef TEMP_InitStructure;        	//声明温度测量初始化配置结构体
extern PSR_InitTypedef PSR_InitStructure;          	//声明大气压强测量初始化配置结构体

//**********************<对外API,重要!>*********************//
//配置好GPIO引脚和IIC通讯地址后,依次调用下面四个函数即可得到高度值

uint8_t SPL06_Init(void);
uint8_t GetCompensatedVal(float* baroValue, float* tempValue, COEF_ValueStruct* COEF);//计算出气压计的单位为hpa
float getAltitude(float P);
float AltitudeFilter(float newAltitude);


//*********************链表初始化*********************//
Factor_List* initList(void);
Factor_List* insertTail(Factor_List *l, uint8_t val, uint32_t Factor);
void Init_FactorList(void);
uint32_t FindFactor(Factor_List* l, uint8_t val);


//*********************传感器初始化*********************//
uint8_t SPL06_PSRInitStruct(PSR_InitTypedef* PSR_InitStructure);
uint8_t SPL06_TEMPInitStruct(TEMP_InitTypedef* TEMP_InitStructure);
uint8_t SPL_OperatingModeInit(MeasureModeConfig config);


//*********************传感器状态获取*******************//
uint8_t COEF_CheckStatus(void);


//*********************传感器内部数据读取***************//
uint8_t GetCoefVal(COEF_ValueStruct* COEF);

uint8_t SPL06_ReadID(void);



#endif

MyI2C.c(基于江协科技)

#include "main.h"                  // Device header
#include "Delay.h"
#include "MyI2C.h"

void MyI2C_W_SCL(uint8_t BitValue)
{
    HAL_GPIO_WritePin(BARO_SCL_GPIO_Port, BARO_SCL_Pin, (GPIO_PinState)BitValue);

}

void MyI2C_W_SDA(uint8_t BitValue)
{
    HAL_GPIO_WritePin(BARO_SDA_GPIO_Port, BARO_SDA_Pin, (GPIO_PinState)BitValue);

}

uint8_t MyI2C_R_SDA(void)
{
	uint8_t BitValue;
	BitValue = HAL_GPIO_ReadPin(BARO_SDA_GPIO_Port, BARO_SDA_Pin);

	return BitValue;
}


void MyI2C_Start(void)
{
	MyI2C_W_SDA(1);
	MyI2C_W_SCL(1);
	MyI2C_W_SDA(0);
	MyI2C_W_SCL(0);
}

void MyI2C_Stop(void)
{
	MyI2C_W_SDA(0);
	MyI2C_W_SCL(1);
	MyI2C_W_SDA(1);
}

void MyI2C_SendByte(uint8_t Byte)
{
	uint8_t i;
	for (i = 0; i < 8; i ++)
	{
		MyI2C_W_SDA(!!(Byte & (0x80 >> i)));
		MyI2C_W_SCL(1);
		MyI2C_W_SCL(0);
	}
}

uint8_t MyI2C_ReceiveByte(void)
{
	uint8_t i, Byte = 0x00;
	MyI2C_W_SDA(1);
	for (i = 0; i < 8; i ++)
	{
		MyI2C_W_SCL(1);
		if (MyI2C_R_SDA()){Byte |= (0x80 >> i);}
		MyI2C_W_SCL(0);
	}
	return Byte;
}

void MyI2C_SendAck(uint8_t AckBit)
{
	MyI2C_W_SDA(AckBit);
	MyI2C_W_SCL(1);
	MyI2C_W_SCL(0);
}

uint8_t MyI2C_ReceiveAck(void)
{
	uint8_t AckBit;
	MyI2C_W_SDA(1);
	MyI2C_W_SCL(1);
	AckBit = MyI2C_R_SDA();
	MyI2C_W_SCL(0);
	return AckBit;
}

uint8_t MyI2C_WriteRegister(uint8_t RegAddr, uint8_t byte)
{

    MyI2C_Start();                      //启动总线
    MyI2C_SendByte(SPL06_ADDRESS_W);    //发送写地址

    if(MyI2C_ReceiveAck() == 1)         //未应答
        return 1;

    MyI2C_SendByte(RegAddr);           //要写入的寄存器地址

    if(MyI2C_ReceiveAck() == 1)         //未应答
        return 1;

    MyI2C_SendByte(byte);
		
		if(MyI2C_ReceiveAck() == 1)         //未应答
        return 1;

    MyI2C_Stop();

    return 0;
}

uint8_t MyI2C_ReadRegister(uint8_t RegAddr)
{
    MyI2C_Start();                      //启动总线
    MyI2C_SendByte(SPL06_ADDRESS_W);              //发送写地址

    if(MyI2C_ReceiveAck() == 1)         //未应答
        return 1;

    MyI2C_SendByte(RegAddr);           //要写入的寄存器地址

    if(MyI2C_ReceiveAck() == 1)         //未应答
        return 1;

    MyI2C_Start();                      //启动总线
    MyI2C_SendByte(SPL06_ADDRESS_R);              //发送读地址

    if(MyI2C_ReceiveAck() == 1)         //未应答
        return 1;

    uint8_t byte =  MyI2C_ReceiveByte();
		
		MyI2C_SendAck(1);

    MyI2C_Stop();

    return byte;
}

uint8_t MyI2C_ReadMultiRegister(uint8_t I2CAddr, uint8_t RegAddr, uint8_t length, uint8_t* temp)
{
	uint8_t AddrW,AddrR;
	AddrW = I2CAddr<<1;
	AddrR = (I2CAddr<<1) + 1;

	MyI2C_Start();                      //启动总线
    MyI2C_SendByte(AddrW);    			//发送写地址

    if(MyI2C_ReceiveAck() == 1)         //未应答
        return 1;

    MyI2C_SendByte(RegAddr);           //要写入的寄存器地址

    if(MyI2C_ReceiveAck() == 1)         //未应答
        return 1;

    MyI2C_Start();                      //启动总线
    MyI2C_SendByte(AddrR);    			//发送读地址

    if(MyI2C_ReceiveAck() == 1)         //未应答
        return 1;

	for(uint8_t i = 0; i < length; i++)
	{
		*(temp + i) = MyI2C_ReceiveByte();

		if(i < length - 1)
		{
			MyI2C_SendAck(0);
		}else{
			MyI2C_SendAck(1);
		}
	}

	MyI2C_Stop();

	return 0;
}

uint8_t MyI2C_WriteMultiRegister(uint8_t I2CAddr, uint8_t RegAddr, uint8_t length, uint8_t* temp)
{
	uint8_t AddrW;
	AddrW = I2CAddr<<1;

	MyI2C_Start();                      //启动总线
    MyI2C_SendByte(AddrW);    			//发送写地址

    if(MyI2C_ReceiveAck() == 1)         //未应答
        return 1;

    MyI2C_SendByte(RegAddr);           //要写入的寄存器地址

    if(MyI2C_ReceiveAck() == 1)         //未应答
        return 1;

	for(uint8_t i = 0; i < length; i++)
	{
		MyI2C_SendByte(*(temp + i));

		if(i < length - 1)
		{
			MyI2C_SendAck(0);
		}else{
			MyI2C_SendAck(1);
		}
	}
	MyI2C_Stop();

	return 0;
}

MyI2C.h

#ifndef __MYI2C_H
#define __MYI2C_H

#include "main.h"
#include "Delay.h"
#include "SPL06.h"

void MyI2C_W_SCL(uint8_t BitValue);
void MyI2C_W_SDA(uint8_t BitValue);
uint8_t MyI2C_R_SDA(void);

void MyI2C_Start(void);
void MyI2C_Stop(void);
void MyI2C_SendByte(uint8_t Byte);
uint8_t MyI2C_ReceiveByte(void);
void MyI2C_SendAck(uint8_t AckBit);
uint8_t MyI2C_ReceiveAck(void);

uint8_t MyI2C_ReadRegister(uint8_t RegAddr);
uint8_t MyI2C_WriteRegister(uint8_t RegAddr, uint8_t byte);
uint8_t MyI2C_ReadMultiRegister(uint8_t I2CAddr, uint8_t RegAddr, uint8_t length, uint8_t* temp);
uint8_t MyI2C_WriteMultiRegister(uint8_t I2CAddr, uint8_t RegAddr, uint8_t length, uint8_t* temp);
#endif

main.c

#include "main.h"
#include "SPL06.h"

int main(void)
{
    HAL_Init();
    SystemClock_Config();
    MX_GPIO_Init();

    uint8_t ack = SPL06_Init();
    float height, filtredHeight;
    float baro, temp;
  
    while(1)
    {
        //获取补偿后的值
		GetCompensatedVal(&baro, &temp, &Coefficient);
        
        //转化为高度值
		height = getAltitude(baro);
        
        //排序,中值平均滤波,可以在SPL06.h中修改FILTER_MAX_SIZE来调整滤波
		filtredHeight = AltitudeFilter(height);
        
		rt_thread_delay(250);
    }
}


http://www.kler.cn/a/447918.html

相关文章:

  • 设计模式之 abstract factory
  • Ubuntu 20.04下Kinect2驱动环境配置与测试【稳定无坑版】
  • 国标GB28181平台EasyGBS在安防视频监控中的信号传输(电源/视频/音频)特性及差异
  • 本地Push Git失败
  • QtCreator配置github copilot实现AI辅助编程
  • Django中注册模型到Admin界面
  • 动手学深度学习-多层感知机-7前向传播、反向传播和计算图
  • labelme标签批量转换数据集json_to_dataset
  • oracle dblink 的创建及使用
  • 在Java虚拟机(JVM)中,方法可以分为虚方法和非虚方法。
  • Dijkstra(迪杰斯特拉)最短路径算法可视化演示
  • torch.unsqueeze:灵活调整张量维度的利器
  • 插入排序 计数排序 数据库的三范式
  • YOLO11改进-注意力-引入自调制特征聚合模块SMFA
  • 2024年智能船舶与机电系统
  • Deformable DETR中的look forword once
  • 排序算法进一步总结
  • 使用 AI 辅助开发一个开源 IP 信息查询工具:一
  • thinkphp 多选框
  • < Chrome Extension : TamperMonkey > 去禁用网页的鼠标的事件 (水文)