当前位置: 首页 > article >正文

YOLO11改进-注意力-引入自调制特征聚合模块SMFA

        本篇文章将介绍一个新的改进机制——SMFA(自调制特征聚合模块),并阐述如何将其应用于YOLOv11中,显著提升模型性能。随着深度学习在计算机视觉中的不断进展,目标检测任务也在快速发展。YOLO系列模型(You Only Look Once)一直因其高效和快速而备受关注。然而,尽管YOLOv11在检测精度和速度上有显著提升,但在处理复杂背景或需要捕捉更多局部和全局信息时,仍然面临挑战。为此,我们引入了SMFA,通过提取图像中的全局结构和细节来进一步提高YOLOv11的性能,尤其在识别小物体或复杂背景物体时表现突出。

首先,我们将解析SMFA的工作原理,它通过EASA分支和LDE分支捕获非局部信息和局部细节,协同建模图像的全局结构与局部细节。随后,我们会详细说明如何将该模块与YOLOv11相结合,展示代码实现细节及其使用方法,最终展现这一改进对目标检测效果的积极影响。

YOLOv11原模型
改进后的模型

1. Self-Modulation Feature Aggregation(SMFA)结构介绍       

        SMFA(自调制特征聚合模块): SMFA模块用于协同建模局部和非局部信息,它分为两个分支:一个是EASA(Efficient Approximation of Self-Attention,简化的自注意力分支),用于捕获非局部信息;另一个是LDE(Local Detail Estimation,局部细节估计分支),用于捕获局部细节。EASA通过对输入特征进行下采样,然后利用全局特征的方差进行调制,再与原始特征进行聚合,提取非局部结构信息。LDE分支则通过卷积操作提取输入特征中的高频局部信息。这种设计可以有效捕获图像的全局和局部细节,从而提升图像中的全局结构和细节。

2. YOLOv11与SMFA的结合   

1. 在backbone中引用:在YOLOv11的骨干网络中,可以将SMFA模块引入SPPF模块之前,。这样,网络不仅能够从输入图像中提取局部细节信息,还可以同时捕获图像的全局信息。这种局部与全局信息的结合能够大幅提升YOLOv11对目标物体的识别能力。

2. 在C3k2中使用SMFA模块:C3k2模块是一种改进的卷积层结构,用于增强特征提取的能力。本文将SMFA插入到C3k2模块中,增强全局和局部信息。

3. Self-Modulation Feature Aggregation(SMFA)代码部分

import torch
import torch.nn as nn
import torch.nn.functional as F

# https://www.ecva.net/papers/eccv_2024/papers_ECCV/papers/06713.pdf


class DMlp(nn.Module):
    def __init__(self, dim, growth_rate=2.0):
        super().__init__()
        hidden_dim = int(dim * growth_rate)
        self.conv_0 = nn.Sequential(
            nn.Conv2d(dim, hidden_dim, 3, 1, 1, groups=dim),
            nn.Conv2d(hidden_dim, hidden_dim, 1, 1, 0)
        )
        self.act = nn.GELU()
        self.conv_1 = nn.Conv2d(hidden_dim, dim, 1, 1, 0)

    def forward(self, x):
        x = self.conv_0(x)
        x = self.act(x)
        x = self.conv_1(x)
        return x


class SMFA(nn.Module):
    def __init__(self, dim=36):
        super(SMFA, self).__init__()
        self.linear_0 = nn.Conv2d(dim, dim * 2, 1, 1, 0)
        self.linear_1 = nn.Conv2d(dim, dim, 1, 1, 0)
        self.linear_2 = nn.Conv2d(dim, dim, 1, 1, 0)

        self.lde = DMlp(dim, 2)

        self.dw_conv = nn.Conv2d(dim, dim, 3, 1, 1, groups=dim)

        self.gelu = nn.GELU()
        self.down_scale = 8

        self.alpha = nn.Parameter(torch.ones((1, dim, 1, 1)))
        self.belt = nn.Parameter(torch.zeros((1, dim, 1, 1)))

    def forward(self, f):
        _, _, h, w = f.shape
        y, x = self.linear_0(f).chunk(2, dim=1)
        x_s = self.dw_conv(F.adaptive_max_pool2d(x, (h // self.down_scale, w // self.down_scale)))
        x_v = torch.var(x, dim=(-2, -1), keepdim=True)
        x_l = x * F.interpolate(self.gelu(self.linear_1(x_s * self.alpha + x_v * self.belt)), size=(h, w),
                                mode='nearest')
        y_d = self.lde(y)
        return self.linear_2(x_l + y_d)



def autopad(k, p=None, d=1):  # kernel, padding, dilation
    """Pad to 'same' shape outputs."""
    if d > 1:
        k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-size
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p


class Conv(nn.Module):
    """Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""

    default_act = nn.SiLU()  # default activation

    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
        """Initialize Conv layer with given arguments including activation."""
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()

    def forward(self, x):
        """Apply convolution, batch normalization and activation to input tensor."""
        return self.act(self.bn(self.conv(x)))

    def forward_fuse(self, x):
        """Perform transposed convolution of 2D data."""
        return self.act(self.conv(x))

class Bottleneck(nn.Module):
    """Standard bottleneck."""

    def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):
        """Initializes a standard bottleneck module with optional shortcut connection and configurable parameters."""
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, k[0], 1)
        self.cv2 = Conv(c_, c2, k[1], 1, g=g)
        self.add = shortcut and c1 == c2

    def forward(self, x):
        """Applies the YOLO FPN to input data."""
        return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))

class C2f(nn.Module):
    """Faster Implementation of CSP Bottleneck with 2 convolutions."""

    def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):
        """Initializes a CSP bottleneck with 2 convolutions and n Bottleneck blocks for faster processing."""
        super().__init__()
        self.c = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, 2 * self.c, 1, 1)
        self.cv2 = Conv((2 + n) * self.c, c2, 1)  # optional act=FReLU(c2)
        self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))

    def forward(self, x):
        """Forward pass through C2f layer."""
        y = list(self.cv1(x).chunk(2, 1))
        y.extend(m(y[-1]) for m in self.m)
        return self.cv2(torch.cat(y, 1))

    def forward_split(self, x):
        """Forward pass using split() instead of chunk()."""
        y = self.cv1(x).split((self.c, self.c), 1)
        y = [y[0], y[1]]
        y.extend(m(y[-1]) for m in self.m)
        return self.cv2(torch.cat(y, 1))

class C3(nn.Module):
    """CSP Bottleneck with 3 convolutions."""

    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
        """Initialize the CSP Bottleneck with given channels, number, shortcut, groups, and expansion values."""
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.cv3 = Conv(2 * c_, c2, 1)  # optional act=FReLU(c2)
        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, k=((1, 1), (3, 3)), e=1.0) for _ in range(n)))

    def forward(self, x):
        """Forward pass through the CSP bottleneck with 2 convolutions."""
        return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))

class Bottleneck_SMFA(nn.Module):
    """Standard bottleneck."""

    def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):
        """Initializes a standard bottleneck module with optional shortcut connection and configurable parameters."""
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, k[0], 1)
        self.cv2 = SMFA(c_)
        self.add = shortcut and c1 == c2

    def forward(self, x):
        """Applies the YOLO FPN to input data."""
        return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))

class C3k(C3):
    """C3k is a CSP bottleneck module with customizable kernel sizes for feature extraction in neural networks."""

    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, k=3):
        """Initializes the C3k module with specified channels, number of layers, and configurations."""
        super().__init__(c1, c2, n, shortcut, g, e)
        c_ = int(c2 * e)  # hidden channels
        # self.m = nn.Sequential(*(RepBottleneck(c_, c_, shortcut, g, k=(k, k), e=1.0) for _ in range(n)))
        self.m = nn.Sequential(*(Bottleneck_SMFA(c_, c_, shortcut, g, k=(k, k), e=1.0) for _ in range(n)))

# 在c3k=True时,使用Bottleneck_SMFA特征融合,为false的时候我们使用普通的Bottleneck提取特征
class C3k2_SMFA(C2f):
    """Faster Implementation of CSP Bottleneck with 2 convolutions."""

    def __init__(self, c1, c2, n=1, c3k=False, e=0.5, g=1, shortcut=True):
        """Initializes the C3k2 module, a faster CSP Bottleneck with 2 convolutions and optional C3k blocks."""
        super().__init__(c1, c2, n, shortcut, g, e)
        self.m = nn.ModuleList(
            C3k(self.c, self.c, 2, shortcut, g) if c3k else Bottleneck(self.c, self.c, shortcut, g) for _ in range(n)
        )


if __name__ == '__main__':
    TB = SMFA(256)
    #创建一个输入张量
    batch_size = 8
    input_tensor=torch.randn(batch_size, 256, 64, 64 )
    #运行模型并打印输入和输出的形状
    output_tensor =TB(input_tensor)
    print("Input shape:",input_tensor.shape)
    print("0utput shape:",output_tensor.shape)

 4. 将SMFA引入到YOLOv11中

第一: 将下面的核心代码复制到D:\bilibili\model\YOLO11\ultralytics-main\ultralytics\nn路径下,如下图所示。

第二:在task.py中导入SMFA包

第三:在task.py中的模型配置部分下面代码

第二个改进 

第一个改进,在SPPF模块之前添加

第四:将模型配置文件复制到YOLOV11.YAMY文件中

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
  l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
  x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs

# YOLO11n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 2, C3k2, [256, False, 0.25]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 2, C3k2, [512, False, 0.25]]
  - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  - [-1, 2, C3k2, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  - [-1, 2, C3k2, [1024, True]]
  - [-1, 1, SMFA, []]
  - [-1, 1, SPPF, [1024, 5]] # 9
  - [-1, 2, C2PSA, [1024]] # 10

# YOLO11n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, C3k2, [512, False]] # 13

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 14], 1, Concat, [1]] # cat head P4
  - [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 11], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)

  - [[17, 20, 23], 1, Detect, [nc]] # Detect(P3, P4, P5)


# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
  l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
  x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs

# YOLO11n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 2, C3k2_SMFA, [256, False, 0.25]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 2, C3k2_SMFA, [512, False, 0.25]]
  - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  - [-1, 2, C3k2_SMFA, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  - [-1, 2, C3k2_SMFA, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 9
  - [-1, 2, C2PSA, [1024]] # 10

# YOLO11n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, C3k2_SMFA, [512, False]] # 13

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, C3k2_SMFA, [256, False]] # 16 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 13], 1, Concat, [1]] # cat head P4
  - [-1, 2, C3k2_SMFA, [512, False]] # 19 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 10], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2_SMFA, [1024, True]] # 22 (P5/32-large)

  - [[16, 19, 22], 1, Detect, [nc]] # Detect(P3, P4, P5)


第五:运行成功


from ultralytics.models import NAS, RTDETR, SAM, YOLO, FastSAM, YOLOWorld

if __name__=="__main__":


    # 使用自己的YOLOv11.yamy文件搭建模型并加载预训练权重训练模型
    model = YOLO(r"D:\bilibili\model\YOLO11\ultralytics-main\ultralytics\cfg\models\11\yolo11_SMFA.yaml")\
        .load(r'D:\bilibili\model\YOLO11\ultralytics-main\yolo11n.pt')  # build from YAML and transfer weights

    results = model.train(data=r'D:\bilibili\model\ultralytics-main\ultralytics\cfg\datasets\VOC_my.yaml',
                          epochs=100, imgsz=640, batch=8)



 


http://www.kler.cn/a/447904.html

相关文章:

  • 【Spring事务】深入浅出Spring事务从原理到源码
  • 【AI知识】为什么激活值过大/过小,初始权重过大/过小,可能导致梯度爆炸/消失?具体例子举例
  • 感受野如何计算?
  • 【C++11】可变模板参数
  • Android Compose list 下拉刷新、上拉加载更多
  • SQL语句练习
  • 2024年智能船舶与机电系统
  • Deformable DETR中的look forword once
  • 排序算法进一步总结
  • 使用 AI 辅助开发一个开源 IP 信息查询工具:一
  • thinkphp 多选框
  • < Chrome Extension : TamperMonkey > 去禁用网页的鼠标的事件 (水文)
  • Pytorch | 利用MI-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
  • 浅析InnoDB引擎架构(已完结)
  • Leetcode 37 Sudoku Solver
  • FastJSON 默认不会包含值为 null 的字段
  • C 语言实现四旋翼飞行器姿态控制:基于 PID 控制器(2)
  • 【前端js】 indexedDB Nosql的使用方法
  • Sourcegraph 概述
  • Redis篇--常见问题篇8--缓存一致性3(注解式缓存Spring Cache)
  • opencv项目--文档扫描
  • 3.metagpt中的软件公司智能体 (Architect 角色)
  • 纯血鸿蒙APP实战开发——文字展开收起案例
  • C# cad启动自动加载启动插件、类库编译 多个dll合并为一个
  • 图解HTTP-HTTP协议
  • 反归一化 from sklearn.preprocessing import MinMaxScaler