当前位置: 首页 > article >正文

【IMU:视觉惯性SLAM系统】

视觉惯性SLAM系统简介

相机(单目/双目/RGBD)与IMU结合起来就是视觉惯性,通常以单目/双目+IMU为主。
IMU里面有个小芯片可以测量角速度与加速度,可分为6轴(6个自由度)和9轴(9个自由度)IMU,具体的关于IMU的介绍可看上一篇。
在这里插入图片描述

视觉惯性SLAM应用

在这里插入图片描述

相机和IMU耦合的优势

  • 在慢速和快速运动的输出上两者具有互补性

  • 相机输出的是图像。相机在低速运动下能够稳定成像。而当相机高速运动时,不仅容易造成成像模糊,而且短时间内图像差异也较大。

  • 而IMU输出的是加速度和角速度,在快速运动时才输出可靠的测量,缓慢运动时测量结果反而不可靠。
    在这里插入图片描述

  • 在使用场景上两者具有互补性

    • 对于相机来说成像是非常重要的:图像的特征提取和匹配和场景的纹理丰富程度、光照条件强相关,在遇到白墙、玻璃等弱纹理环境以及暗光条件下很难提取到可靠特征点
    • 而IMU在这个场景没有此类问题。IMU不受视觉场景环境的能响,在该场景下IMU输出不受影响。IMU本身是个芯片,对场景没有视觉输出。
      在这里插入图片描述
  • 在确定绝对尺度方面两者具有互补性

    • 单目相机具有尺度不确定性。对于单目相机来说,无法获得绝对的尺度。如下图无法确定奥特曼和房子的真实尺度,可能同时都是模型,也可能奥特曼是人扮演的而房子是模型等。
    • 而通过单目和IMU的数据融合,可以得到绝对的尺度。
      • IMU中的加速度积分是速度,速度积分是位移。可以积分出来尺度(在多少时间内跑了多少),然后将IMU得到的尺度与视觉得到的尺度进行融合以得到绝对尺度。
        在这里插入图片描述
  • 在感知自身运动和环境变化方面两者具有互补性

    • 通过给定相机画面,很难判断出是相机在动,还是相机画面中的景色在动。

    • IMU则不同,如果车没有开,IMU就是静止的,理论上是没有输出的。
      在这里插入图片描述

    • 在抑制漂移方面两者具有互补性
      常用的IMU误差很大,积分一段时间会产生很大的漂移。但图像的输出是稳定的(现在拍和隔一段时间拍基本是一样的),可以认为没有飘逸。

视觉惯性SLAM系统对比

  • 优秀开源方案:VINS-Fusion(单双目+IMU)、OKVIS(单双日+IMU) 、ORB SLAM3(单双目+IMU/RGB-D)
  • 开源方案对比
    • 目前主流的视觉和视觉惯性SLAM、VO系统对比
      在这里插入图片描述

    • 在数据集上各VIO算法量化效果对比
      ORB-SLAM3是最佳的
      在这里插入图片描述

    • ORB-SLAM3算法流程图
      在这里插入图片描述


http://www.kler.cn/a/448937.html

相关文章:

  • Redis分布式锁释放锁是否必须用lua脚本?
  • 聊一聊性能测试是如何开展的?
  • Unittest框架及自动化测试实现流程
  • Blender 中投影仪的配置与使用
  • RT-DETR融合[ECCV2024]FADformer中的FFCM模块
  • 【1 day】OtterRoot:Netfilter 通用 Root
  • 第22天:信息收集-Web应用各语言框架安全组件联动系统数据特征人工分析识别项目
  • SecureCRT汉化版
  • 3D架构图软件 iCraft Editor 正式发布 @icraftplayer-react 前端组件, 轻松嵌入3D架构图到您的项目,实现数字孪生
  • 关于JavaScript中的this-笔记
  • AAAI-2024 | 大语言模型赋能导航决策!NavGPT:基于大模型显式推理的视觉语言导航
  • 项目底链华为链切换长安链经验总结
  • 简易CPU设计入门:本系统中的通用寄存器(一)
  • 刷题 两数之和
  • Aec-Library-Website 项目常见问题解决方案
  • laya游戏引擎中打包之后图片模糊
  • 【python高级】341-计算机网络基础 for Socket网络编程
  • VSCode:IDE显示设置 --自定义字体及主题颜色
  • 【JVM】如何有效调整JVM年轻代和老年代的大小
  • Java项目--仿RabbitMQ的消息队列--基于MQ的生产者消费者模型