当前位置: 首页 > article >正文

【数据仓库】spark大数据处理框架

文章目录

    • 概述
    • 架构
    • spark 架构角色
    • 下载
    • 安装
    • 启动pyspark
    • 启动spark-sehll
    • 启动spark-sql
    • spark-submit
    • 经验

概述

Spark是一个性能优异的集群计算框架,广泛应用于大数据领域。类似Hadoop,但对Hadoop做了优化,计算任务的中间结果可以存储在内存中,不需要每次都写入HDFS,更适用于需要迭代运算的算法场景中。

Spark专注于数据的处理分析,而数据的存储还是要借助于Hadoop分布式文件系统HDFS等来实现。

大数据问题场景包含以下三种:

  • 复杂的批量数据处理
  • 基于历史数据的交互式查询
  • 基于实时数据流的数据处理

Spark技术栈基本可以解决以上三种场景问题。

架构

在这里插入图片描述

1 spark Core :spark的核心模块,是spark运行基础。以RDD为数据抽象,提供python、java、scala、R语言的api,可以通过RDD编程进行海量离线数据批处理计算。

2 Spark SQL:基于Spark Core,提供结构化数据处理功能。可以使用SQL语言对数据进行处理,可用于离线计算场景。同时基于Spark SQL提供了StructuredStreaming模块,可以使用时SQL进行流式计算。

3 sparkStreaming : 以Spark Core为基础,提供数据的流式计算功能

4 MLlib:以spark Core为基础,进行机器学习计算,内置大量机器学习库和API算法等。

5 Graphx:以spark Core为基础,进行图计算,提供大量图计算的API,方便以分布式资源进行图计算。

6 spark底层的文件存储还是基于hdfs分布式文件系统,支持多种部署方式。

spark 架构角色

在这里插入图片描述

从两个层面理解:

资源管理层面:(典型的Master-Worker架构)

管理者:即Master角色,只能有一个

​ 工作者:即Worker角色,可以有多个。一个worker在一个分布式节点上,监测当前节点的资源状况,向master节点汇总。

任务执行层面:

​ 某任务管理者:Driver角色,一个任务只能有一个

​ 某任务执行者:Executor角色,可以有多个

在特殊场景下(local模式),Driver即是管理者又是执行者

下载

下载地址:

http://spark.apache.org/downloads.html

或者

https://archive.apache.org/dist/spark/

选择合适自己的版本下载。

Spark2.X预编译了Scala2.11(Spark2.4.2预编译Scala2.12)

Spark3.0+预编译了Scala2.12

该教程选择Spark3.2.1版本,其中预编译了Hadoop3.2和Scala2.13,对应的包是 spark-3.2.1-bin-hadoop3.2-scala2.13.tgz,但这里的预编译Hadoop不是指不需要再安装Hadoop。

linux 服务器上下载地址

wget https://archive.apache.org/dist/spark/spark-3.2.1/spark-3.2.1-bin-hadoop3.2-scala2.13.tgz

安装

Spark的安装部署支持三种模式,

local本地模式(单机):启动一个JVM Process进程,通过其内部的多个线程来模拟整个spark运行时各个角色。一个进程里有多个线程。

Local[N]:可以使用N个线程,一个线程利用一个cpu核,通常cpu有几个核,就指定几个线程,最大化利用计算能力;
Local[*],按照cpu核数设置线程数;

standalone模式(集群):各个角色以独立进程的形式存在,并组成spark集群

​ spark on YARN模式(集群):各个角色运行在yarn的容器内部,组成集群环境

​ kubernetes 模式(容器集群):各个角色运行在kubernetes 容器内部,组成集群环境

本文将只介绍 本地Local模式,其它模式将会在后续文章中进行介绍。

该文的安装环境为centos7。

1、将下载的包上传到服务器指定目录,解压

[root@localhost softnew]# tar zxvf spark-3.1.2-bin-hadoop3.2.tgz
# 修改目录
mv spark-3.1.2-bin-hadoop3.2 spark-3.1.2

2、修改配置文件

修改/etc/profile文件,新增spark环境变量:

 # Spark Environment Variables
 export SPARK_HOME=/home/bigData/softnew/spark
 export PATH=$PATH:$SPARK_HOME/bin

修改完成后记得执行 source /etc/profile 使其生效

启动pyspark

​ pyspark 是spark集成python后,可以使用python 脚本编写spark 数据 批处理计算。pyspark提供了一个shell窗口。

./pyspark
[root@yd-ss bin]# ./pyspark
Python 3.10.10 (main, Dec 26 2024, 22:46:13) [GCC 4.8.5 20150623 (Red Hat 4.8.5-44)] on linux
Type "help", "copyright", "credits" or "license" for more information.
24/12/27 10:46:44 WARN Utils: Your hostname, yd-ss resolves to a loopback address: 127.0.0.1; using xx.xx.xx.xx instead (on interface bond0)
24/12/27 10:46:44 WARN Utils: Set SPARK_LOCAL_IP if you need to bind to another address
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
24/12/27 10:46:46 WARN HiveConf: HiveConf of name hive.metastore.event.db.notification.api.auth does not exist
24/12/27 10:46:46 WARN HiveConf: HiveConf of name hive.server2.active.passive.ha.enable does not exist
24/12/27 10:46:46 WARN HiveConf: HiveConf of name hive.exec.default.charset does not exist
24/12/27 10:46:46 WARN HiveConf: HiveConf of name hive.exec.default.national.charset does not exist
24/12/27 10:46:46 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /__ / .__/\_,_/_/ /_/\_\   version 3.2.1
      /_/

Using Python version 3.10.10 (main, Dec 26 2024 22:46:13)
Spark context Web UI available at http://sc:4040
Spark context available as 'sc' (master = local[*], app id = local-1735267609271).
SparkSession available as 'spark'.
>>>

进入窗口,即可使用python 写RDD编程代码了。

同时,可以通过web ui 在4040端口访问,查看spark 任务执行情况。

执行如下计算任务

sc.parallelize([1,2,3,4,5]).map(lambda x:x*10).collect()

访问localhost:4040

在这里插入图片描述

可以看到job清单,这个job,起了24个线程去处理计算。 由于跑任务的服务器是24核的,执行./pyspark 默认以local[*]最大线程去启动。

在这里插入图片描述

可以看到任务层面,启动了一个driver,由于是local模式,所以driver即是管理者也是执行者。

可以在pyspark-shell下利用spark做一些简单开发任务;

下面修改启动命令:

# 该local模式启动2个线程
./pyspark --master local[2]

再次执行

sc.parallelize([1,2,3,4,5]).map(lambda x:x*10).collect()

在这里插入图片描述

可以看到这个job只用了2个线程来处理计算。

还可以利用该shell处理其他计算任务,也就是说一个shell 启动起来,是可以处理多个任务的,但只要关闭窗口,shell就会关闭。就不能再处理任务了。

通过shell 总是不便,后续将介绍通过pycharm进行RDD计算任务编写。

退出shell脚本

quit()或者ctrl + D

启动spark-sehll

./spark-shell

可以看到如下信息:

[root@yd-ss bin]# ./spark-shell
24/12/27 11:11:50 WARN Utils: Your hostname, yd-ss resolves to a loopback address: 127.0.0.1; using xx.xx.xx.xx instead (on interface bond0)
24/12/27 11:11:50 WARN Utils: Set SPARK_LOCAL_IP if you need to bind to another address
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /___/ .__/\_,_/_/ /_/\_\   version 3.2.1
      /_/

Using Scala version 2.13.5 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_201)
Type in expressions to have them evaluated.
Type :help for more information.
24/12/27 11:12:04 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Spark context Web UI available at http://sc:4040
Spark context available as 'sc' (master = local[*], app id = local-1735269126553).
Spark session available as 'spark'.

scala>

这个是要使用scala语言编写,其他跟pyspark类似。

启动spark-sql

./spark-sql

可以看到如下:

[root@yd-ss bin]# ./spark-sql
24/12/27 11:14:28 WARN Utils: Your hostname, yd-ss resolves to a loopback address: 127.0.0.1; using xx.xx.xx.xx instead (on interface bond0)
24/12/27 11:14:28 WARN Utils: Set SPARK_LOCAL_IP if you need to bind to another address
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
24/12/27 11:14:29 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
24/12/27 11:14:30 WARN HiveConf: HiveConf of name hive.metastore.event.db.notification.api.auth does not exist
24/12/27 11:14:30 WARN HiveConf: HiveConf of name hive.server2.active.passive.ha.enable does not exist
24/12/27 11:14:30 WARN HiveConf: HiveConf of name hive.exec.default.charset does not exist
24/12/27 11:14:30 WARN HiveConf: HiveConf of name hive.exec.default.national.charset does not exist
Spark master: local[*], Application Id: local-1735269273943
spark-sql>

可以看到这个是依赖hive数仓配置的。spark-sql是没有元数据管理的,所以需要跟hive集成,利用其元数据管理功能。后续将详细介绍。

spark-submit

该工具是用来提交写好的计算脚本,到saprk上去执行,执行完成即结束。和前面的shell不一样,shell只要没关闭,就可以一直执行的。

# 执行spark自带的python示例,计算pi的值(8次迭代)
./spark-submit /home/spark/spark-3.2.1/examples/src/main/python/pi.py 8

该脚本,会基于spark启动一个driver,执行pi.py计算,然后打开web ui 4040监控接口,执行完成后输出结果,最后关闭driver,关闭web ui。

是个一次性的任务执行。

经验

1 spark 功能比较强大,使用方式也很丰富,初步学习只需要了解自己使用方式即可;

2 spark local模式使用配置是比较简单的,基本是开箱即用;


http://www.kler.cn/a/456245.html

相关文章:

  • 影刀进阶应用 | 知乎发布想法
  • 十二月第五周python
  • 【最新】沃德协会管理系统源码+uniapp前端+环境教程
  • 使用 Docker 搭建 Hadoop 集群
  • OTA场景使用mbed TLS 进行 MD5 校验
  • C#WPF基础介绍/第一个WPF程序
  • springboot整合log4j2案例以及异常输出格式案例2
  • RAGFlow 基于深度文档理解构建的开源 RAG引擎 - 使用Ollama添加大模型
  • Springboot配置嵌入式服务器
  • vue Promise使用
  • 什么是缓存穿透、缓存击穿、缓存雪崩,在项目中是如何解决和预防?它们分别会带来什么危害?
  • MyBatis知识点笔记
  • 【Websocket和nginx配置】
  • 实验五 时序逻辑电路部件实验
  • 如何在idea中搭建SpringBoot项目
  • 使用 Docker 搭建 Hadoop 集群
  • Day52 图论part03
  • llm知识梳理
  • Github 2024-12-28 Rust开源项目日报 Top10
  • AIGC在电影与影视制作中的应用:提高创作效率与创意的无限可能
  • 简单园区网拓扑实验
  • Android OpenGl(二) Shader
  • 基于C#了解垃圾回收机制
  • Faster R-CNN
  • 【intellij idea 创建springBoot 搭配mybatis oracle】
  • C# 简单使用NModbus