当前位置: 首页 > article >正文

动手学深度学习-深度学习计算-3延后初始化

目录

实例化网络

小结


到目前为止,我们忽略了建立网络时需要做的以下这些事情:

  • 我们定义了网络架构,但没有指定输入维度。

  • 我们添加层时没有指定前一层的输出维度。

  • 我们在初始化参数时,甚至没有足够的信息来确定模型应该包含多少参数。

有些读者可能会对我们的代码能运行感到惊讶。 毕竟,深度学习框架无法判断网络的输入维度是什么。 这里的诀窍是框架的延后初始化(defers initialization), 即直到数据第一次通过模型传递时,框架才会动态地推断出每个层的大小。

在以后,当使用卷积神经网络时, 由于输入维度(即图像的分辨率)将影响每个后续层的维数, 有了该技术将更加方便。 现在我们在编写代码时无须知道维度是什么就可以设置参数, 这种能力可以大大简化定义和修改模型的任务。 接下来,我们将更深入地研究初始化机制。

实例化网络

首先,让我们实例化一个多层感知机。

from mxnet import np, npx
from mxnet.gluon import nn

npx.set_np()

def get_net():
    net = nn.Sequential()
    net.add(nn.Dense(256, activation='relu'))
    net.add(nn.Dense(10))
    return net

net = get_net()

此时,因为输入维数是未知的,所以网络不可能知道输入层权重的维数。 因此,框架尚未初始化任何参数,我们通过尝试访问以下参数进行确认。

print(net.collect_params)
print(net.collect_params())
<bound method Block.collect_params of Sequential( (0): Dense(-1 -> 256, Activation(relu)) (1): Dense(-1 -> 10, linear) )> sequential0_ ( Parameter dense0_weight (shape=(256, -1), dtype=float32) Parameter dense0_bias (shape=(256,), dtype=float32) Parameter dense1_weight (shape=(10, -1), dtype=float32) Parameter dense1_bias (shape=(10,), dtype=float32) )

注意,当参数对象存在时,每个层的输入维度为-1。 MXNet使用特殊值-1表示参数维度仍然未知。 此时,尝试访问net[0].weight.data()将触发运行时错误, 提示必须先初始化网络,然后才能访问参数。 现在让我们看看当我们试图通过initialize函数初始化参数时会发生什么。

net.initialize()
net.collect_params()
[07:01:36] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager for CPU
sequential0_ (
  Parameter dense0_weight (shape=(256, -1), dtype=float32)
  Parameter dense0_bias (shape=(256,), dtype=float32)
  Parameter dense1_weight (shape=(10, -1), dtype=float32)
  Parameter dense1_bias (shape=(10,), dtype=float32)
)

如我们所见,一切都没有改变。 当输入维度未知时,调用initialize不会真正初始化参数。 而是会在MXNet内部声明希望初始化参数,并且可以选择初始化分布。

接下来让我们将数据通过网络,最终使框架初始化参数。

X = np.random.uniform(size=(2, 20))
net(X)

net.collect_params()
sequential0_ ( Parameter dense0_weight (shape=(256, 20), dtype=float32) Parameter dense0_bias (shape=(256,), dtype=float32) Parameter dense1_weight (shape=(10, 256), dtype=float32) Parameter dense1_bias (shape=(10,), dtype=float32) )

一旦我们知道输入维数是20,框架可以通过代入值20来识别第一层权重矩阵的形状。 识别出第一层的形状后,框架处理第二层,依此类推,直到所有形状都已知为止。 注意,在这种情况下,只有第一层需要延迟初始化,但是框架仍是按顺序初始化的。 等到知道了所有的参数形状,框架就可以初始化参数。

小结

  • 延后初始化使框架能够自动推断参数形状,使修改模型架构变得容易,避免了一些常见的错误。

  • 我们可以通过模型传递数据,使框架最终初始化参数。


http://www.kler.cn/a/461332.html

相关文章:

  • Unity UGUI使用技巧与经验总结(不定期更新)
  • lec5-传输层原理与技术
  • MinGW 和 MinGW-w64 的介绍与配置
  • 生成对抗网络 (Generative Adversarial Network, GAN) 算法MNIST图像生成任务及CelebA图像超分辨率任务
  • flutter 专题二十四 Flutter 响应式状态管理框架GetX
  • xdoj校验和
  • 它真的可以绕过 ICloud 激活吗
  • redis的使用
  • 伏羲0.15(文生图)
  • Windows10开机登录系统后黑屏只有鼠标可以动可以唤起任务管理器
  • 【济南】《政务信息化项目软件开发费用测算指南》-省市费用标准解读系列35
  • 常见的文件外发安全
  • 怎样在 Word 文档中插入附件(其他文件)?
  • 【网络云SRE运维开发】2024第52周-每日【2024/12/31】小测-计算机网络参考模型和通信协议的理论和实操考题
  • 若依框架之简历pdf文档预览功能
  • BinaryMoS: 提升二值化大语言模型的创新技术
  • 大型ERP系统GL(总账管理)模块需求分析
  • OpenCV-Python实战(14)——轮廓拟合
  • gunicorn开发时候如何自动重启
  • 标准库以及HAL库——按键控制LED灯代码
  • 植物大战僵尸杂交版3.0.2版本
  • 使用Xjar给SpringBoot项目jar包加密
  • Druid连接Oracle数据库,连接失效导致SQL无法执行
  • “云梦乘风起,数智继风华”丨2024韩山师范学院数学与统计学院大数据方向企业微专业结业典礼圆满结束
  • 面试经典150题——滑动窗口
  • Colyseus 的可扩展性