模拟退火算法在Matlab中的两个应用案例及代码
案例一:求解函数最小值
目标函数为f(x)=x^4-2x^2+3,求该函数在区间[-2,2]上的最小值。
function [x,fval] = simulated_annealing(fun,x0,options)
% 设置默认选项
default_options = struct('T0',100,'alpha',0.95,'T_min',1e-8,'max_iter',1000,'verbose',false);
if nargin < 3
options = default_options;
else
options = merge_options(default_options,options);
end
% 初始化参数
T = options.T0;
x = x0;
fval = feval(fun,x);
iter = 0;
best_x = x;
best_fval = fval;
% 开始迭代
while T > options.T_min && iter < options.max_iter
% 产生新解
new_x = x + randn*0.5;
new_x = max(min(new_x,2),-2);
new_fval = feval(fun,new_x);
delta_f = new_fval - fval;
% 接受新解
if delta_f < 0 || exp(-delta_f/T) > rand()
x = new_x;
fval = new_fval;
if fval < best_fval
best_x = x;
best_fval = fval;
end
end
% 降温
T = options.alpha * T;
% 更新迭代计数器
iter = iter + 1;
end
x = best_x;
fval = best_fval;
end
function opt = merge_options(default_opt,opt)
if isempty(opt)
opt = default_opt;
else
fields = fieldnames(default_opt);
for i = 1:length(fields)
if ~isfield(opt,fields{i})
opt.(fields{i}) = default_opt.(fields{i});
end
end
end
end
fun = @(x) x^4 - 2*x^2 + 3;
x0 = 1;
options = struct('T0',100,'alpha',0.95,'T_min',1e-8,'max_iter',1000,'verbose',true);
[x,fval] = simulated_annealing(fun,x0,options);
案例二:旅行商问题(TSP)
假设有10个城市,坐标分别为(x,y),计算出一条最短的旅行路线。
% 城市坐标
city_coords = [
1 2;
3 4;
5 6;
7 8;
9 10;
11 12;
13 14;
15 16;
17 18;
19 20
];
n = size(city_coords, 1);
% 计算距离矩阵
distance_matrix = zeros(n);
for i = 1:n
for j = 1:n
distance_matrix(i, j) = norm(city_coords(i, :) - city_coords(j, :));
end
end
% 模拟退火算法参数
T0 = 100;
alpha = 0.95;
T_min = 1e-8;
max_iter = 1000;
% 初始化路径
current_path = randperm(n);
current_distance = calculate_distance(current_path, distance_matrix);
best_path = current_path;
best_distance = current_distance;
T = T0;
for iter = 1:max_iter
% 产生新路径
new_path = generate_new_path(current_path);
new_distance = calculate_distance(new_path, distance_matrix);
delta_distance = new_distance - current_distance;
% 接受新路径
if delta_distance < 0 || exp(-delta_distance/T) > rand()
current_path = new_path;
current_distance = new_distance;
if current_distance < best_distance
best_path = current_path;
best_distance = current_distance;
end
end
% 降温
T = alpha * T;
end
function distance = calculate_distance(path, distance_matrix)
n = length(path);
distance = 0;
for i = 1:(n - 1)
distance = distance + distance_matrix(path(i), path(i + 1));
end
distance = distance + distance_matrix(path(n), path(1));
end
function new_path = generate_new_path(current_path)
n = length(current_path);
i = randi([1, n]);
j = randi([1, n]);
while i == j
j = randi([1, n]);
end
new_path = current_path;
new_path(i) = current_path(j);
new_path(j) = current_path(i);
end
上述代码,第一个案例中的函数 simulated_annealing 实现了模拟退火算法,用于求解函数的最小值,案例二中定义了城市坐标和距离矩阵,并实现了计算路径距离的函数 calculate_distance 和产生新路径的函数 generate_new_path ,最终得到最优旅行路线。