当前位置: 首页 > article >正文

大模型WebUI:Gradio全解11——Chatbot:融合大模型的多模态聊天机器人(6)

大模型WebUI:Gradio全解11——Chatbot:融合大模型的多模态聊天机器人(6)

  • 前言
  • 本篇摘要
  • 11. Chatbot:融合大模型的多模态聊天机器人
    • 11.6 为LLM Agent构建UI
      • 11.5.1 使用代理构建
        • 1. 使用transformers.agents的实际示例
        • 2. 使用Langchain agents的实际示例
      • 11.5.2 使用显式思考的LLM构建UI
        • 1. 使用Gemini 2.0 Flash Thinking API构建
    • 参考文献

前言

本系列文章主要介绍WEB界面工具Gradio。Gradio是Hugging Face发布的简易webui开发框架,它基于FastAPI和svelte,可以使用机器学习模型、python函数或API开发多功能界面和部署人工智能模型,是当前热门的非常易于展示机器学习大语言模型LLM及扩散模型DM的WebUI框架。
本系列文章分为前置概念、安装运行与部署、Gradio高级特性、基础功能实战和高级功能实战五部分。第一部分前置概念:先介绍Gradio的详细技术架构、历史、应用场景、与其他框架Gradio/NiceGui/StreamLit/Dash/PyWebIO的区别,然后详细介绍了著名的资源网站Hugging Face,因为Gradio演示中经常用到Hugging Face的models及某些场景需要部署在spaces,这里主要包括三类资源models/datasets/spaces的使用以及六类工具库transformers/diffusers/datasets/PEFT/accelerate/optimum实战。第二部分安装运行与部署:讲解多种不同的安装、运行和部署方式,安装包括Linux/Win/Mac三类系统安装,运行包括普通方式和热重载方式,部署包括本地部署、HuggingFace托管、FastAPI挂载和Gradio-Lite浏览器集成。第三部分Gradio高级特性:按照先整体再细节的逻辑,讲解Gradio的多种高级特性,包括三种Gradio Clients(python/javascript/curl)、Gradio Tools、Gradio的模块架构和环境变量等,方便读者对Gradio整体把握。第四部分基础功能实战:深入细节,也是本系列文章的核心,实践基础功能Interface、Blocks和Additional Features。第五部分高级功能实战:详解高级功能Chatbots、Data Science And Plots和Streaming。
本系列文章讲解细致,涵盖Gradio大部分组件和功能,代码均可运行并附有大量运行截图,方便读者理解并应用到开发中,Gradio一定会成为每个技术人员实现各种奇思妙想的最称手工具。

本系列文章目录如下:

  1. 《Gradio全解1——Gradio简介》
  2. 《Gradio全解1——Gradio的安装与运行》
  3. 《Gradio全解2——剖析Hugging Face:详解三类资源models/datasets/spaces》
  4. 《Gradio全解3——剖析Hugging Face:实战六类工具库transformers/diffusers/datasets/PEFT/accelerate/optimum》
  5. 《Gradio全解4——Gradio的3+1种部署方式实践》
  6. 《Gradio全解4——浏览器集成Gradio-Lite》
  7. 《Gradio全解5——Gradio Client:python客户端》
  8. 《Gradio全解5——Gradio Client:javascript客户端》
  9. 《Gradio全解5——Gradio Client:curl客户端》
  10. 《Gradio全解6——Gradio Tools:将Gradio用于LLM Agents》
  11. 《Gradio全解7——Gradio库的模块架构和环境变量》
  12. 《Gradio全解8——Interface:高级抽象界面类(上)》
  13. 《Gradio全解8——Interface:高级抽象界面类(下)》
  14. 《Gradio全解9——Blocks:底层区块类(上)》
  15. 《Gradio全解9——Blocks:底层区块类(下)》
  16. 《Gradio全解10——Additional Features:补充特性(上)》
  17. 《Gradio全解10——Additional Features:补充特性(下)》
  18. 《Gradio全解11——Chatbot:融合大模型的多模态聊天机器人(1)》
  19. 《Gradio全解11——Chatbot:融合大模型的多模态聊天机器人(2)》
  20. 《Gradio全解11——Chatbot:融合大模型的多模态聊天机器人(3)》
  21. 《Gradio全解11——Chatbot:融合大模型的多模态聊天机器人(4)》
  22. 《Gradio全解11——Chatbot:融合大模型的多模态聊天机器人(5)》
  23. 《Gradio全解11——Chatbot:融合大模型的多模态聊天机器人(6)》
  24. 《Gradio全解11——Chatbot:融合大模型的多模态聊天机器人(7)》
  25. 《Gradio全解11——Chatbot:融合大模型的多模态聊天机器人(8)》
  26. 《Gradio全解11——Chatbot:融合大模型的多模态聊天机器人(9)》
  27. 《Gradio全解系列12——Data Science And Plots:数据科学与绘图》
  28. 《Gradio全解13——Streaming:数据流(上)》
  29. 《Gradio全解13——Streaming:数据流(下)》

本篇摘要

本篇介绍如何使用Gradio创建聊天机器人,主要内容包括gr.ChatInterface快速创建Chatbot、与流行LLM库及API结合、组件Chatbot及消息格式ChatMessage、使用Blocks创建Chatbot、Chatbot的特殊Events、使用Agents和Tools智能代理工具、通过Gradio应用创建Discord Bot/Slack Bot/Website Widget。

11. Chatbot:融合大模型的多模态聊天机器人

本章介绍如何使用Gradio创建聊天机器人。聊天机器人是大型语言模型(LLMs)的一个流行应用,通过Gradio,我们可以轻松构建LLM演示并与其它用户分享,或者自己使用直观的聊天机器人界面进行开发尝试。本章主要内容包括gr.ChatInterface快速创建Chatbot、与流行LLM库及API结合、组件Chatbot及消息格式ChatMessage、使用Blocks创建Chatbot、Chatbot的特殊Events、使用Agents和Tools智能代理工具、通过Gradio应用创建Discord Bot/Slack Bot/Website Widget。

11.6 为LLM Agent构建UI

Gradio的Chatbot组件可以原生显示中间思考和工具使用情况(参考metadata用法),这使得它非常适合为LLM Agent和思维链(Chain-of-Thought, CoT)演示创建UI用户界面,本节将向你展示如何实现这一点。

11.5.1 使用代理构建

本小节使用两种代理来构建UI,一种使用transformers.agents,另一种使用Langchain agents。

1. 使用transformers.agents的实际示例

我们将创建一个简单的Gradio应用程序代理,该代理可以使用文本生成图像的工具。提示:请确保你先阅读了transformers代理文档,地址:https://huggingface.co/docs/transformers/en/agents。

我们将从导入transformers和gradio中的必要类开始,代码如下:

import gradio as gr
from dataclasses import asdict
from transformers import Tool, ReactCodeAgent  # type: ignore
from transformers.agents import stream_to_gradio, HfApiEngine  # type: ignore

# Import tool from Hub
image_generation_tool = Tool.from_space(  # type: ignore
    space_id="black-forest-labs/FLUX.1-schnell",
    name="image_generator",
    description="Generates an image following your prompt. Returns a PIL Image.",
    api_name="/infer",
)

llm_engine = HfApiEngine("Qwen/Qwen2.5-Coder-32B-Instruct")
# Initialize the agent with both tools and engine
agent = ReactCodeAgent(tools=[image_generation_tool], llm_engine=llm_engine)

# Building UI
def interact_with_agent(prompt, history):
    messages = []
    yield messages
    for msg in stream_to_gradio(agent, prompt):
        messages.append(asdict(msg))  # type: ignore
        yield messages
    yield messages

demo = gr.ChatInterface(
    interact_with_agent,
    chatbot= gr.Chatbot(
        label="Agent",
        type="messages",
        avatar_images=(
            None,
            "https://em-content.zobj.net/source/twitter/53/robot-face_1f916.png",
        ),
    ),
    examples=[
        ["Generate an image of an astronaut riding an alligator"],
        ["I am writing a children's book for my daughter. Can you help me with some illustrations?"],
    ],
    type="messages",
)

if __name__ == "__main__":
    demo.launch()

运行截图如下:
在这里插入图片描述
作者在本地运行时会报JSON解析错误:JSONDecodeError: Expecting value: line 1 column 1 (char 0),解决办法无从查找,请读者使用Hugging Face的演示:https://huggingface.co/spaces/gradio/agent_chatbot。
从输出可以看到思考、工具调用和最终结果的调用过程,正是ReactCodeAgent代理的推理执行过程。

2. 使用Langchain agents的实际示例

我们将为一个可以访问搜索引擎的Langchain agents创建一个用户界面,将从导入库和设置Langchain agents开始。请注意,你需要一个包含以下环境变量的.env文件或将它们设置到运行环境中:SERPAPI_API_KEY=“”、HF_TOKEN=““和OPENAI_API_KEY=””。
演示代码如下:

from langchain import hub
from langchain.agents import AgentExecutor, create_openai_tools_agent, load_tools
from langchain_openai import ChatOpenAI
from gradio import ChatMessage
import gradio as gr
from dotenv import load_dotenv

load_dotenv()

model = ChatOpenAI(temperature=0, streaming=True)

tools = load_tools(["serpapi"])

# Get the prompt to use - you can modify this!
prompt = hub.pull("hwchase17/openai-tools-agent")
# print(prompt.messages) -- to see the prompt
agent = create_openai_tools_agent(
    model.with_config({"tags": ["agent_llm"]}), tools, prompt
)
agent_executor = AgentExecutor(agent=agent, tools=tools).with_config(
    {"run_name": "Agent"}
)

然后创建Gradio UI:

async def interact_with_langchain_agent(prompt, messages):
    messages.append(ChatMessage(role="user", content=prompt))
    yield messages
    async for chunk in agent_executor.astream(
        {"input": prompt}
    ):
        if "steps" in chunk:
            for step in chunk["steps"]:
                messages.append(ChatMessage(role="assistant", content=step.action.log,
                                  metadata={"title": f"🛠️ Used tool {step.action.tool}"}))
                yield messages
        if "output" in chunk:
            messages.append(ChatMessage(role="assistant", content=chunk["output"]))
            yield messages

with gr.Blocks() as demo:
    gr.Markdown("# Chat with a LangChain Agent 🦜⛓️ and see its thoughts 💭")
    chatbot = gr.Chatbot(
        type="messages",
        label="Agent",
        avatar_images=(
            None,
            "https://em-content.zobj.net/source/twitter/141/parrot_1f99c.png",
        ),
    )
    input = gr.Textbox(lines=1, label="Chat Message")
    input.submit(interact_with_langchain_agent, [input_2, chatbot_2], [chatbot_2])

demo.launch()

运行界面如下:
在这里插入图片描述
不能运行的读者可以在Hugging Face上查看完整演示:https://huggingface.co/spaces/gradio/langchain-agent。

11.5.2 使用显式思考的LLM构建UI

Gradio的Chatbot组件借助metadata可以原生显示一个思考型LLM的中间思考过程,这使得它非常适合创建展示AI模型在生成响应时如何“思考”的用户界面。以下将向你展示如何构建一个实时显示Gemini AI思考过程的聊天机器人。

1. 使用Gemini 2.0 Flash Thinking API构建

让我们创建一个完整的聊天机器人,实时显示其思考和响应。我们将使用Google的Gemini API来访问 Gemini 2.0 Flash Thinking LLM,并使用Gradio构建用户界面。

我们将从导入库和设置 Gemini 客户端开始。当然需要先获取一个 Google Gemini API密钥,代码如下:

import gradio as gr
from gradio import ChatMessage
from typing import Iterator
import google.generativeai as genai

genai.configure(api_key="your-gemini-api-key")
model = genai.GenerativeModel("gemini-2.0-flash-thinking-exp-1219")

First, let’s set up our streaming function that handles the model’s output:

def stream_gemini_response(user_message: str, messages: list) -> Iterator[list]:
    """
    Streams both thoughts and responses from the Gemini model.
    """
    # Initialize response from Gemini
    response = model.generate_content(user_message, stream=True)
    
    # Initialize buffers
    thought_buffer = ""
    response_buffer = ""
    thinking_complete = False
    
    # Add initial thinking message
    messages.append(
        ChatMessage(
            role="assistant",
            content="",
            metadata={"title": "⏳Thinking: *The thoughts produced by the Gemini2.0 Flash model are experimental"}
        )
    )
    
    for chunk in response:
        parts = chunk.candidates[0].content.parts
        current_chunk = parts[0].text
        
        if len(parts) == 2 and not thinking_complete:
            # Complete thought and start response
            thought_buffer += current_chunk
            messages[-1] = ChatMessage(
                role="assistant",
                content=thought_buffer,
                metadata={"title": "⏳Thinking: *The thoughts produced by the Gemini2.0 Flash model are experimental"}
            )
            
            # Add response message
            messages.append(
                ChatMessage(
                    role="assistant",
                    content=parts[1].text
                )
            )
            thinking_complete = True
            
        elif thinking_complete:
            # Continue streaming response
            response_buffer += current_chunk
            messages[-1] = ChatMessage(
                role="assistant",
                content=response_buffer
            )
            
        else:
            # Continue streaming thoughts
            thought_buffer += current_chunk
            messages[-1] = ChatMessage(
                role="assistant",
                content=thought_buffer,
                metadata={"title": "⏳Thinking: *The thoughts produced by the Gemini2.0 Flash model are experimental"}
            )
        
        yield messages

然后创建Gradio界面:

with gr.Blocks() as demo:
    gr.Markdown("# Chat with Gemini 2.0 Flash and See its Thoughts 💭")
    
    chatbot = gr.Chatbot(
        type="messages",
        label="Gemini2.0 'Thinking' Chatbot",
        render_markdown=True,
    )
    
    input_box = gr.Textbox(
        lines=1,
        label="Chat Message",
        placeholder="Type your message here and press Enter..."
    )
    
    # Set up event handlers
    msg_store = gr.State("")  # Store for preserving user message
    
    input_box.submit(
        lambda msg: (msg, msg, ""),  # Store message and clear input
        inputs=[input_box],
        outputs=[msg_store, input_box, input_box],
        queue=False
    ).then(
        user_message,  # Add user message to chat
        inputs=[msg_store, chatbot],
        outputs=[input_box, chatbot],
        queue=False
    ).then(
        stream_gemini_response,  # Generate and stream response
        inputs=[msg_store, chatbot],
        outputs=chatbot
    )

demo.launch()

这将创建一个具有以下功能的聊天机器人:

  • 在可折叠部分中显示模型的思考过程;
  • 实时流式传输思考过程和最终响应;
  • 保持清晰的聊天记录。

完成!现在我们拥有了一个不仅能实时响应用户,还能展示其思考过程的聊天机器人,从而创建更加透明和引人入胜的交互体验。查看完整的Gemini 2.0 Flash Thinking演示地址:https://huggingface.co/spaces/ysharma/Gemini2-Flash-Thinking。

参考文献

  1. Gradio - guides - Chatbots

http://www.kler.cn/a/507942.html

相关文章:

  • 三只松鼠携手爱零食,社区零售新高峰拔地而起
  • 目标检测新视野 | YOLO、SSD与Faster R-CNN三大目标检测模型深度对比分析
  • 【Flink系列】9. Flink容错机制
  • 基于 requests 依赖包的 Python 爬虫实战
  • 【C#深度学习之路】如何使用C#实现Yolo8/11 Segment 全尺寸模型的训练和推理
  • vue 纯前端导出 Excel
  • Qt 使用共享内存的方式限制程序单一启动
  • 深入内核讲明白Android Binder【二】
  • 【JVM-8】使用 IBM Thread and Monitor Dump Analyzer for Java (TMDA) 分析线程转储
  • 深入了解卷积神经网络(CNN):图像处理与深度学习的革命性技术
  • 修复5.0.0r 64位版本浏览器和一些库找不到的问题
  • Flink (九):DataStream API (六) Process Function
  • 如何在 Google Cloud Shell 中使用 Visual Studio Code (VS Code)?
  • Spring Boot与MyBatis
  • FPGA:Quartus软件与操作系统版本对照表
  • Java 开发常见面试题3
  • ORB-SLAM2源码学习: Frame.cc: cv::Mat Frame::UnprojectStereo将某个特征点反投影到三维世界坐标系中
  • “云计算+中职”:VR虚拟仿真实训室的发展前景
  • VS2022——WPF初始化和控件Nmae虚假报错
  • 在 JIRA 中利用仪表盘功能生成 Bug 相关图表的手册
  • 无人机(Unmanned Aerial Vehicle, UAV)路径规划介绍
  • Qotom Q10922H6 N100多网口无风扇迷你电脑2个10G和4个2.5G网口
  • Android SystemUI——NavigationBar导航栏(七)
  • 39.【4】CTFHUB web sql 布尔注入
  • 客户案例:致远OA与携程商旅集成方案
  • python之二维几何学习笔记