当前位置: 首页 > article >正文

python学opencv|读取图像(五十)使用addWeighted()函数实现图像加权叠加效果

【1】引言

前序学习进程中,学习了图像互相叠加的不同操作方法,包括add()函数直接叠加BGR值和使用bitwise()函数对BGR值进行按位计算叠加等,相关文章链接包括且不限于:

python学opencv|读取图像(四十二)使用cv2.add()函数实现多图像叠加-CSDN博客

python学opencv|读取图像(四十九)使用cv2.bitwise()系列函数实现图像按位运算-CSDN博客

实际上,有时候的需求不一定是两张图像完整叠加,而可能是更偏向某一张图像,这就需要调用addWeighted()函数实现图像加权叠加效果。

【2】官网教程

点击下方链接,直达官网对addWeighted()函数的说明网页:

OpenCV: Operations on arrays

官网页面为:

图1 addWeighted()函数的说明网页

官网也给出了addWeighted()函数的参数说明:

void cv::addWeighted     (    

        InputArray     src1,              #输入图像1
        double     alpha,                 #图像1权重
        InputArray     src2,             #输入图像2
        double     beta,                  #图像2权重
        double     gamma,             #权重的综合叠加量
        OutputArray     dst,           #输出图像
        int     dtype = -1 )              #输出图像的深度,为默认值,暂无需关注

【3】代码测试

首先引入相关模块和初始图像:

import cv2 as cv # 引入CV模块
import numpy as np #引入numpy模块

# 读取图片
srcx = cv.imread('srcx.png') #读取图像srcx.png
srcp = cv.imread('srcp.png') #读取图像srcp.png
rows,cols,cans=srcx.shape #读取图像属性
srcp=cv.resize(srcp,(rows,cols), interpolation=cv.INTER_CUBIC) #统一图像大小

然后对图像进行加权叠加:

#调用cv2.addWeighted()函数进行加权叠加
src=cv.addWeighted(srcx,0.6,srcp,0.2,0.5) #调用cv2.addWeighted()函数进行加权叠加

之后在屏幕显示和保存图像:

#显示和保存图像
cv.imshow('src',src) #显示图像
cv.imshow('srcx',srcx) #显示图像
cv.imshow('srcp',srcp) #显示图像
cv.imwrite('src.png',src) #保存图像
cv.waitKey()  # 图像不关闭
cv.destroyAllWindows()  # 释放所有窗口

代码使用的初始图像分别为:

图2 第一张图像srcx.png

图3 第二张图像srcp.png 

图4 加权叠加的图像src.png  

由图2至图4可见,经过加权叠加后,两张图像熔合在一起。

此时的完整代码为:

import cv2 as cv # 引入CV模块
import numpy as np #引入numpy模块

# 读取图片
srcx = cv.imread('srcx.png') #读取图像srcx.png
srcp = cv.imread('srcp.png') #读取图像srcp.png
rows,cols,cans=srcx.shape #读取图像属性
srcp=cv.resize(srcp,(rows,cols), interpolation=cv.INTER_CUBIC) #统一图像大小

#调用cv2.addWeighted()函数进行加权叠加
src=cv.addWeighted(srcx,0.6,srcp,0.2,0.5) #调用cv2.addWeighted()函数进行加权叠加

#显示和保存图像
cv.imshow('src',src) #显示图像
cv.imshow('srcx',srcx) #显示图像
cv.imshow('srcp',srcp) #显示图像
cv.imwrite('src.png',src) #保存图像
cv.waitKey()  # 图像不关闭
cv.destroyAllWindows()  # 释放所有窗口

【4】代码修改

进一步修改代码,交换权重,调高最后的综合叠加量:

src=cv.addWeighted(srcx,0.2,srcp,0.6,3) #调用cv2.addWeighted()函数进行加权叠加

此时获得的叠加效果为:

图5 加权叠加的图像src.png   

显然,不同的权重会改百年图像混合的主体,增大最后的综合叠加量,图像会变亮。

【5】细节说明

代码中调用了图像尺寸修改函数,相关函数的说明在之前也介绍过,可以点击链接回忆:

python学opencv|读取图像(三)放大和缩小图像_py opencv图像缩放-CSDN博客

【6】总结

掌握了使用python+opencv调用addWeighted()函数实现图像加权叠加效果的技巧。


http://www.kler.cn/a/524931.html

相关文章:

  • 【学术会议征稿-第二届生成式人工智能与信息安全学术会议(GAIIS 2025)】人工智能与信息安全的魅力
  • GSI快速收录服务:让你的网站内容“上架”谷歌
  • 图论——最小生成树的扩展应用
  • C++ 静态变量static的使用方法
  • C++ unordered_map和unordered_set的使用,哈希表的实现
  • K8S 快速实战
  • 【JavaWeb06】Tomcat基础入门:架构理解与基本配置指南
  • 【Hadoop】Hadoop 概述
  • 选择的阶段性质疑
  • 冯诺依曼系统及操作系统
  • C#通过3E帧SLMP/MC协议读写三菱FX5U/Q系列PLC数据案例
  • Python面试宝典7 | 正则表达式的match()与search(),精准匹配与全局搜索
  • Spring MVC 框架:构建高效 Java Web 应用的利器
  • LeetCode:343. 整数拆分
  • MyBatis 框架:简化 Java 数据持久化的利器
  • LLM:BERT or BART 之BERT
  • Vue3 结合 .NetCore WebApi 前后端分离跨域请求简易实例
  • JavaScript_02 表单
  • UE AController
  • Go语言的栈空间管理
  • 使用 Confluent Cloud 的 Elasticsearch Connector 部署 Elastic Agent
  • 全面解析文件包含漏洞:原理、危害与防护
  • 力扣动态规划-14【算法学习day.108】
  • 电子电气架构 --- 车载电子和软件架构概述
  • 完美世界C++游戏开发面试题及参考答案
  • 服务器虚拟化技术详解与实战:架构、部署与优化