当前位置: 首页 > article >正文

讯飞智作 AI 配音技术浅析(二):深度学习与神经网络

讯飞智作 AI 配音技术依赖于深度学习与神经网络,特别是 TacotronWaveNet 和 Transformer-TTS 模型。这些模型通过复杂的神经网络架构和数学公式,实现了从文本到自然语音的高效转换。


一、Tacotron 模型

Tacotron 是一种端到端的语音合成模型,能够直接从文本生成语音频谱(Mel-spectrogram),然后通过声码器生成最终的语音信号。其主要优势在于能够捕捉文本与语音之间的复杂关系,生成自然流畅的语音。

1. 模型架构

Tacotron 的架构主要包括以下几个部分:

1.编码器(Encoder)

2.注意力机制(Attention Mechanism)

3.解码器(Decoder)

4.后处理网络(Post-processing Network)

    2. 详细技术解析
    1. 编码器(Encoder)

    功能:将输入的文本序列转换为隐藏表示(hidden representations),捕捉文本的语义和语法信息。

    过程

    • 文本嵌入(Text Embedding):将每个字符或单词转换为向量表示。

      其中,x_{t}​ 是第 t 个字符,\textbf{e}_{t} 是其对应的嵌入向量。

    • 卷积层(Convolutional Layers):使用多层一维卷积神经网络(1D CNN)来捕捉文本的局部特征。

    • 双向长短期记忆网络(Bi-directional LSTM):捕捉文本的上下文信息。

      其中,\textbf{h}_{t}​ 是第 t 个时间步的隐藏状态。

    输出:编码器输出一个隐藏状态序列 \textbf{H}=\left \{ \textbf{h}_{1},\textbf{h}_{2},...,\textbf{h}_{T} \right \},作为注意力机制的输入。

    2. 注意力机制(Attention Mechanism)

    功能:在解码过程中,选择性地关注输入文本的不同部分,生成相应的语音频谱。

    过程

    • 计算注意力权重

      其中,\textbf{s}_{i-1}​ 是解码器在第 i-1 个时间步的隐藏状态,\textrm{score} 是评分函数(如点积、拼接等)。

    • 计算上下文向量

    输出:上下文向量 \textbf{c}_{i},用于指导解码器生成语音频谱。

    3. 解码器(Decoder)

    功能:根据上下文向量和之前的语音频谱,生成当前时间步的语音频谱。

    过程

    • LSTM 层

      其中,\textbf{y}_{i-1}​ 是之前生成的语音频谱。

    • 全连接层

      生成当前时间步的语音频谱预测。

    输出:语音频谱序列 \textbf{Y}=\left \{ \textbf{y}_{1},\textbf{y}_{2},...,\textbf{y}_{N} \right \}

    4. 后处理网络(Post-processing Network)

    功能:将预测的语音频谱转换为最终的语音信号。

    过程

    • 使用声码器(Vocoder):Tacotron 通常使用 Griffin-Lim 算法作为声码器,将梅尔频谱转换为语音波形。

    输出:最终的语音波形 \textbf{w}

    3. 关键技术公式总结

    二、WaveNet 模型

    WaveNet 是一种基于卷积神经网络的声码器,能够生成高保真度的语音波形。其主要优势在于能够捕捉语音中的细微变化,生成非常自然的语音。

    1. 模型架构

    WaveNet 的架构主要包括以下几个部分:

    1.因果卷积层(Causal Convolutional Layers)

    2.扩张卷积层(Dilated Convolutional Layers)

    3.门控激活单元(Gated Activation Units)

    4.残差连接(Residual Connections)

    5.跳跃连接(Skip Connections)

    6.输出层(Output Layer)

      2. 详细技术解析
      1. 因果卷积层(Causal Convolutional Layers)

      功能:确保模型在生成当前样本时,只依赖于之前的样本。

      过程

      • 使用一维卷积神经网络(1D CNN),并通过填充(padding)实现因果性。
      2. 扩张卷积层(Dilated Convolutional Layers)

      功能:增加感受野(receptive field),捕捉更长时间的依赖关系。

      过程

      • 在卷积层中引入扩张因子(dilation factor),使得卷积操作跳过若干个样本。

        其中,d 是扩张因子,\textbf{W}^{\left ( l \right )} 是卷积核。

      3. 门控激活单元(Gated Activation Units)

      功能:引入非线性,增强模型的表达能力。

      过程

      • 使用门控机制,将卷积输出分为两部分:

        其中,\ast 表示卷积操作,\odot 表示逐元素相乘,\sigma 是 sigmoid 函数。

      4. 残差连接(Residual Connections)

      功能:缓解梯度消失问题,促进梯度流动。

      过程

      • 将卷积层的输入与输出相加:

      5. 跳跃连接(Skip Connections)

      功能:将底层信息直接传递到高层,增强模型的表达能力。

      过程

      • 将每一层的输出通过跳跃连接传递到输出层:

      6. 输出层(Output Layer)

      功能:将模型输出转换为最终的语音波形。

      过程

      • 使用全连接层,将跳跃连接的结果映射到语音波形的概率分布:

      3. 关键技术公式总结

      三、Transformer-TTS 模型

      Transformer-TTS 模型基于 Transformer 架构,利用自注意力机制(Self-Attention)捕捉文本与语音之间的长距离依赖关系,生成更加自然的语音。

      1. 模型架构

      Transformer-TTS 的架构主要包括以下几个部分:

      1.编码器(Encoder)

      2.解码器(Decoder)

      3.位置编码(Positional Encoding)

      4.多头自注意力机制(Multi-head Self-Attention)

      5.前馈神经网络(Feed-Forward Neural Network)

      6.输出层(Output Layer)

        2. 详细技术解析
        1. 位置编码(Positional Encoding)

        功能:为序列中的每个位置添加位置信息,使模型能够感知序列的顺序。

        过程

        • 使用正弦和余弦函数生成位置编码:

          其中,pos 是位置,i 是维度索引,d_{\textrm{model}} 是模型的维度。

        2. 多头自注意力机制(Multi-head Self-Attention)

        功能:捕捉序列中不同位置之间的依赖关系。

        过程

        • 将输入序列分割成多个头(heads),分别进行自注意力计算:

          其中,Q,K,V 分别是查询、键和值矩阵,\textbf{W}_{i}^{Q},\textbf{W}_{i}^{K},\textbf{W}_{i}^{V}​ 是对应的权重矩阵,\textbf{W}^{O} 是输出权重矩阵。

        • 注意力计算

        3. 前馈神经网络(Feed-Forward Neural Network)

        功能:为每个位置提供非线性变换。

        过程

        • 使用两层全连接层:

        4. 编码器和解码器
        • 编码器:由多层多头自注意力机制和前馈神经网络组成。
        • 解码器:除了多头自注意力机制和前馈神经网络外,还包含编码器-解码器注意力机制。
        5. 输出层

        功能:将解码器输出转换为语音频谱。

        过程

        • 使用线性层将解码器输出映射到语音频谱:

        3. 关键技术公式总结

        http://www.kler.cn/a/525585.html

        相关文章:

      1. 解锁微服务:五大进阶业务场景深度剖析
      2. 不背单词快捷键(不背单词键盘快捷键)
      3. gitee——报错修改本地密码
      4. 【HarmonyOS之旅】基于ArkTS开发(三) -> 兼容JS的类Web开发(一)
      5. 多头潜在注意力(MLA):让大模型“轻装上阵”的技术革新——从DeepSeek看下一代语言模型的高效之路
      6. 【Super Tilemap Editor使用详解】(十三):快捷键指南(Keyboard Shortcuts)
      7. 嵌入式知识点总结 Linux驱动 (五)-linux内核
      8. Linux Samba 低版本漏洞(远程控制)复现与剖析
      9. d3.js: Relation Graph
      10. 「AI学习笔记」深度学习进化史:从神经网络到“黑箱技术”(三)
      11. 使用Python将Excel文件转换为PDF格式
      12. Spring WebFlux揭秘:下一代响应式编程框架,与Spring MVC有何不同?
      13. ROS_noetic-打印hello(√)
      14. 你了解哪些Java限流算法?
      15. 深入探讨:服务器如何响应前端请求及后端如何查看前端提交的数据(基础语法版)
      16. 基于微信小程序的辅助教学系统的设计与实现
      17. 【Linux】--- 制作一个简易的shell
      18. 4.用户 组
      19. 代码随想录|动态规划 322. 零钱兑换 279.完全平方数 139.单词拆分
      20. Java实现LFU缓存策略实战
      21. 31. C语言 命令行参数
      22. 剑指 Offer II 011. 0 和 1 个数相同的子数组
      23. 【开源免费】基于SpringBoot+Vue.JS公交线路查询系统(JAVA毕业设计)
      24. unity使用AVpro插件播放视频,打包安卓系统总是失败
      25. R语言统计分析——ggplot2绘图4——刻面
      26. 21.2-工程中添加FreeRTOS(掌握) 用STM32CubeMX添加FreeRTOS