llama.cpp LLM_CHAT_TEMPLATE_DEEPSEEK_3
llama.cpp LLM_CHAT_TEMPLATE_DEEPSEEK_3
- 1. `LLAMA_VOCAB_PRE_TYPE_DEEPSEEK3_LLM`
- 2. `static const std::map<std::string, llm_chat_template> LLM_CHAT_TEMPLATES`
- 3. `LLM_CHAT_TEMPLATE_DEEPSEEK_3`
- References
不宜吹捧中国大语言模型的同时,又去贬低美国大语言模型。
水是人体的主要化学成分,约占体重的 50% 至 70%,大语言模型的含水量也不会太低。
科技发展靠的是硬实力,而不是情怀和口号。
llama.cpp
https://github.com/ggerganov/llama.cpp
1. LLAMA_VOCAB_PRE_TYPE_DEEPSEEK3_LLM
LLAMA_VOCAB_PRE_TYPE_DEEPSEEK3_LLM
,LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM
andLLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER
/home/yongqiang/llm_work/llama_cpp_25_01_05/llama.cpp/include/llama.h
enum llama_vocab_type {
LLAMA_VOCAB_TYPE_NONE = 0, // For models without vocab
LLAMA_VOCAB_TYPE_SPM = 1, // LLaMA tokenizer based on byte-level BPE with byte fallback
LLAMA_VOCAB_TYPE_BPE = 2, // GPT-2 tokenizer based on byte-level BPE
LLAMA_VOCAB_TYPE_WPM = 3, // BERT tokenizer based on WordPiece
LLAMA_VOCAB_TYPE_UGM = 4, // T5 tokenizer based on Unigram
LLAMA_VOCAB_TYPE_RWKV = 5, // RWKV tokenizer based on greedy tokenization
};
// pre-tokenization types
enum llama_vocab_pre_type {
LLAMA_VOCAB_PRE_TYPE_DEFAULT = 0,
LLAMA_VOCAB_PRE_TYPE_LLAMA3 = 1,
LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM = 2,
LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER = 3,
LLAMA_VOCAB_PRE_TYPE_FALCON = 4,
LLAMA_VOCAB_PRE_TYPE_MPT = 5,
LLAMA_VOCAB_PRE_TYPE_STARCODER = 6,
LLAMA_VOCAB_PRE_TYPE_GPT2 = 7,
LLAMA_VOCAB_PRE_TYPE_REFACT = 8,
LLAMA_VOCAB_PRE_TYPE_COMMAND_R = 9,
LLAMA_VOCAB_PRE_TYPE_STABLELM2 = 10,
LLAMA_VOCAB_PRE_TYPE_QWEN2 = 11,
LLAMA_VOCAB_PRE_TYPE_OLMO = 12,
LLAMA_VOCAB_PRE_TYPE_DBRX = 13,
LLAMA_VOCAB_PRE_TYPE_SMAUG = 14,
LLAMA_VOCAB_PRE_TYPE_PORO = 15,
LLAMA_VOCAB_PRE_TYPE_CHATGLM3 = 16,
LLAMA_VOCAB_PRE_TYPE_CHATGLM4 = 17,
LLAMA_VOCAB_PRE_TYPE_VIKING = 18,
LLAMA_VOCAB_PRE_TYPE_JAIS = 19,
LLAMA_VOCAB_PRE_TYPE_TEKKEN = 20,
LLAMA_VOCAB_PRE_TYPE_SMOLLM = 21,
LLAMA_VOCAB_PRE_TYPE_CODESHELL = 22,
LLAMA_VOCAB_PRE_TYPE_BLOOM = 23,
LLAMA_VOCAB_PRE_TYPE_GPT3_FINNISH = 24,
LLAMA_VOCAB_PRE_TYPE_EXAONE = 25,
LLAMA_VOCAB_PRE_TYPE_CHAMELEON = 26,
LLAMA_VOCAB_PRE_TYPE_MINERVA = 27,
LLAMA_VOCAB_PRE_TYPE_DEEPSEEK3_LLM = 28,
};
/home/yongqiang/llm_work/llama_cpp_25_01_05/llama.cpp/src/llama-hparams.h
// bump if necessary
#define LLAMA_MAX_LAYERS 512
#define LLAMA_MAX_EXPERTS 256 // DeepSeekV3
enum llama_expert_gating_func_type {
LLAMA_EXPERT_GATING_FUNC_TYPE_NONE = 0,
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX = 1,
LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID = 2,
};
2. static const std::map<std::string, llm_chat_template> LLM_CHAT_TEMPLATES
LLM_CHAT_TEMPLATE_DEEPSEEK_3
,LLM_CHAT_TEMPLATE_DEEPSEEK_2
andLLM_CHAT_TEMPLATE_DEEPSEEK
/home/yongqiang/llm_work/llama_cpp_25_01_05/llama.cpp/src/llama-chat.h
enum llm_chat_template {
LLM_CHAT_TEMPLATE_CHATML,
LLM_CHAT_TEMPLATE_LLAMA_2,
LLM_CHAT_TEMPLATE_LLAMA_2_SYS,
LLM_CHAT_TEMPLATE_LLAMA_2_SYS_BOS,
LLM_CHAT_TEMPLATE_LLAMA_2_SYS_STRIP,
LLM_CHAT_TEMPLATE_MISTRAL_V1,
LLM_CHAT_TEMPLATE_MISTRAL_V3,
LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN,
LLM_CHAT_TEMPLATE_MISTRAL_V7,
LLM_CHAT_TEMPLATE_PHI_3,
LLM_CHAT_TEMPLATE_PHI_4,
LLM_CHAT_TEMPLATE_FALCON_3,
LLM_CHAT_TEMPLATE_ZEPHYR,
LLM_CHAT_TEMPLATE_MONARCH,
LLM_CHAT_TEMPLATE_GEMMA,
LLM_CHAT_TEMPLATE_ORION,
LLM_CHAT_TEMPLATE_OPENCHAT,
LLM_CHAT_TEMPLATE_VICUNA,
LLM_CHAT_TEMPLATE_VICUNA_ORCA,
LLM_CHAT_TEMPLATE_DEEPSEEK,
LLM_CHAT_TEMPLATE_DEEPSEEK_2,
LLM_CHAT_TEMPLATE_DEEPSEEK_3,
LLM_CHAT_TEMPLATE_COMMAND_R,
LLM_CHAT_TEMPLATE_LLAMA_3,
LLM_CHAT_TEMPLATE_CHATGML_3,
LLM_CHAT_TEMPLATE_CHATGML_4,
LLM_CHAT_TEMPLATE_MINICPM,
LLM_CHAT_TEMPLATE_EXAONE_3,
LLM_CHAT_TEMPLATE_RWKV_WORLD,
LLM_CHAT_TEMPLATE_GRANITE,
LLM_CHAT_TEMPLATE_GIGACHAT,
LLM_CHAT_TEMPLATE_MEGREZ,
LLM_CHAT_TEMPLATE_UNKNOWN,
};
{ "deepseek3", LLM_CHAT_TEMPLATE_DEEPSEEK_3 }
,{ "deepseek2", LLM_CHAT_TEMPLATE_DEEPSEEK_2 }
and{ "deepseek", LLM_CHAT_TEMPLATE_DEEPSEEK }
/home/yongqiang/llm_work/llama_cpp_25_01_05/llama.cpp/src/llama-chat.cpp
static const std::map<std::string, llm_chat_template> LLM_CHAT_TEMPLATES = {
{ "chatml", LLM_CHAT_TEMPLATE_CHATML },
{ "llama2", LLM_CHAT_TEMPLATE_LLAMA_2 },
{ "llama2-sys", LLM_CHAT_TEMPLATE_LLAMA_2_SYS },
{ "llama2-sys-bos", LLM_CHAT_TEMPLATE_LLAMA_2_SYS_BOS },
{ "llama2-sys-strip", LLM_CHAT_TEMPLATE_LLAMA_2_SYS_STRIP },
{ "mistral-v1", LLM_CHAT_TEMPLATE_MISTRAL_V1 },
{ "mistral-v3", LLM_CHAT_TEMPLATE_MISTRAL_V3 },
{ "mistral-v3-tekken", LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN },
{ "mistral-v7", LLM_CHAT_TEMPLATE_MISTRAL_V7 },
{ "phi3", LLM_CHAT_TEMPLATE_PHI_3 },
{ "phi4", LLM_CHAT_TEMPLATE_PHI_4 },
{ "falcon3", LLM_CHAT_TEMPLATE_FALCON_3 },
{ "zephyr", LLM_CHAT_TEMPLATE_ZEPHYR },
{ "monarch", LLM_CHAT_TEMPLATE_MONARCH },
{ "gemma", LLM_CHAT_TEMPLATE_GEMMA },
{ "orion", LLM_CHAT_TEMPLATE_ORION },
{ "openchat", LLM_CHAT_TEMPLATE_OPENCHAT },
{ "vicuna", LLM_CHAT_TEMPLATE_VICUNA },
{ "vicuna-orca", LLM_CHAT_TEMPLATE_VICUNA_ORCA },
{ "deepseek", LLM_CHAT_TEMPLATE_DEEPSEEK },
{ "deepseek2", LLM_CHAT_TEMPLATE_DEEPSEEK_2 },
{ "deepseek3", LLM_CHAT_TEMPLATE_DEEPSEEK_3 },
{ "command-r", LLM_CHAT_TEMPLATE_COMMAND_R },
{ "llama3", LLM_CHAT_TEMPLATE_LLAMA_3 },
{ "chatglm3", LLM_CHAT_TEMPLATE_CHATGML_3 },
{ "chatglm4", LLM_CHAT_TEMPLATE_CHATGML_4 },
{ "minicpm", LLM_CHAT_TEMPLATE_MINICPM },
{ "exaone3", LLM_CHAT_TEMPLATE_EXAONE_3 },
{ "rwkv-world", LLM_CHAT_TEMPLATE_RWKV_WORLD },
{ "granite", LLM_CHAT_TEMPLATE_GRANITE },
{ "gigachat", LLM_CHAT_TEMPLATE_GIGACHAT },
{ "megrez", LLM_CHAT_TEMPLATE_MEGREZ },
};
3. LLM_CHAT_TEMPLATE_DEEPSEEK_3
LLM_CHAT_TEMPLATE_DEEPSEEK_3
,LLM_CHAT_TEMPLATE_DEEPSEEK_2
andLLM_CHAT_TEMPLATE_DEEPSEEK
/home/yongqiang/llm_work/llama_cpp_25_01_05/llama.cpp/src/llama-chat.cpp
// Simple version of "llama_apply_chat_template" that only works with strings
// This function uses heuristic checks to determine commonly used template. It is not a jinja parser.
int32_t llm_chat_apply_template(
llm_chat_template tmpl,
const std::vector<const llama_chat_message *> & chat,
std::string & dest, bool add_ass) {
// Taken from the research: https://github.com/ggerganov/llama.cpp/issues/5527
std::stringstream ss;
if (tmpl == LLM_CHAT_TEMPLATE_CHATML) {
// chatml template
for (auto message : chat) {
ss << "<|im_start|>" << message->role << "\n" << message->content << "<|im_end|>\n";
}
if (add_ass) {
ss << "<|im_start|>assistant\n";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V7) {
// Official mistral 'v7' template
// See: https://huggingface.co/mistralai/Mistral-Large-Instruct-2411#basic-instruct-template-v7
for (auto message : chat) {
std::string role(message->role);
std::string content(message->content);
if (role == "system") {
ss << "[SYSTEM_PROMPT] " << content << "[/SYSTEM_PROMPT]";
} else if (role == "user") {
ss << "[INST] " << content << "[/INST]";
}
else {
ss << " " << content << "</s>";
}
}
} else if (tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V1
|| tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V3
|| tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN) {
// See: https://github.com/mistralai/cookbook/blob/main/concept-deep-dive/tokenization/chat_templates.md
// See: https://github.com/mistralai/cookbook/blob/main/concept-deep-dive/tokenization/templates.md
std::string leading_space = tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V1 ? " " : "";
std::string trailing_space = tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN ? "" : " ";
bool trim_assistant_message = tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V3;
bool is_inside_turn = false;
for (auto message : chat) {
if (!is_inside_turn) {
ss << leading_space << "[INST]" << trailing_space;
is_inside_turn = true;
}
std::string role(message->role);
std::string content(message->content);
if (role == "system") {
ss << content << "\n\n";
} else if (role == "user") {
ss << content << leading_space << "[/INST]";
} else {
ss << trailing_space << (trim_assistant_message ? trim(content) : content) << "</s>";
is_inside_turn = false;
}
}
} else if (
tmpl == LLM_CHAT_TEMPLATE_LLAMA_2
|| tmpl == LLM_CHAT_TEMPLATE_LLAMA_2_SYS
|| tmpl == LLM_CHAT_TEMPLATE_LLAMA_2_SYS_BOS
|| tmpl == LLM_CHAT_TEMPLATE_LLAMA_2_SYS_STRIP) {
// llama2 template and its variants
// [variant] support system message
// See: https://huggingface.co/blog/llama2#how-to-prompt-llama-2
bool support_system_message = tmpl != LLM_CHAT_TEMPLATE_LLAMA_2;
// [variant] add BOS inside history
bool add_bos_inside_history = tmpl == LLM_CHAT_TEMPLATE_LLAMA_2_SYS_BOS;
// [variant] trim spaces from the input message
bool strip_message = tmpl == LLM_CHAT_TEMPLATE_LLAMA_2_SYS_STRIP;
// construct the prompt
bool is_inside_turn = true; // skip BOS at the beginning
ss << "[INST] ";
for (auto message : chat) {
std::string content = strip_message ? trim(message->content) : message->content;
std::string role(message->role);
if (!is_inside_turn) {
is_inside_turn = true;
ss << (add_bos_inside_history ? "<s>[INST] " : "[INST] ");
}
if (role == "system") {
if (support_system_message) {
ss << "<<SYS>>\n" << content << "\n<</SYS>>\n\n";
} else {
// if the model does not support system message, we still include it in the first message, but without <<SYS>>
ss << content << "\n";
}
} else if (role == "user") {
ss << content << " [/INST]";
} else {
ss << content << "</s>";
is_inside_turn = false;
}
}
} else if (tmpl == LLM_CHAT_TEMPLATE_PHI_3) {
// Phi 3
for (auto message : chat) {
std::string role(message->role);
ss << "<|" << role << "|>\n" << message->content << "<|end|>\n";
}
if (add_ass) {
ss << "<|assistant|>\n";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_PHI_4) {
// chatml template
for (auto message : chat) {
ss << "<|im_start|>" << message->role << "<|im_sep|>" << message->content << "<|im_end|>";
}
if (add_ass) {
ss << "<|im_start|>assistant<|im_sep|>";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_FALCON_3) {
// Falcon 3
for (auto message : chat) {
std::string role(message->role);
ss << "<|" << role << "|>\n" << message->content << "\n";
}
if (add_ass) {
ss << "<|assistant|>\n";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_ZEPHYR) {
// zephyr template
for (auto message : chat) {
ss << "<|" << message->role << "|>" << "\n" << message->content << "<|endoftext|>\n";
}
if (add_ass) {
ss << "<|assistant|>\n";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_MONARCH) {
// mlabonne/AlphaMonarch-7B template (the <s> is included inside history)
for (auto message : chat) {
std::string bos = (message == chat.front()) ? "" : "<s>"; // skip BOS for first message
ss << bos << message->role << "\n" << message->content << "</s>\n";
}
if (add_ass) {
ss << "<s>assistant\n";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_GEMMA) {
// google/gemma-7b-it
std::string system_prompt = "";
for (auto message : chat) {
std::string role(message->role);
if (role == "system") {
// there is no system message for gemma, but we will merge it with user prompt, so nothing is broken
system_prompt = trim(message->content);
continue;
}
// in gemma, "assistant" is "model"
role = role == "assistant" ? "model" : message->role;
ss << "<start_of_turn>" << role << "\n";
if (!system_prompt.empty() && role != "model") {
ss << system_prompt << "\n\n";
system_prompt = "";
}
ss << trim(message->content) << "<end_of_turn>\n";
}
if (add_ass) {
ss << "<start_of_turn>model\n";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_ORION) {
// OrionStarAI/Orion-14B-Chat
std::string system_prompt = "";
for (auto message : chat) {
std::string role(message->role);
if (role == "system") {
// there is no system message support, we will merge it with user prompt
system_prompt = message->content;
continue;
} else if (role == "user") {
ss << "Human: ";
if (!system_prompt.empty()) {
ss << system_prompt << "\n\n";
system_prompt = "";
}
ss << message->content << "\n\nAssistant: </s>";
} else {
ss << message->content << "</s>";
}
}
} else if (tmpl == LLM_CHAT_TEMPLATE_OPENCHAT) {
// openchat/openchat-3.5-0106,
for (auto message : chat) {
std::string role(message->role);
if (role == "system") {
ss << message->content << "<|end_of_turn|>";
} else {
role[0] = toupper(role[0]);
ss << "GPT4 Correct " << role << ": " << message->content << "<|end_of_turn|>";
}
}
if (add_ass) {
ss << "GPT4 Correct Assistant:";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_VICUNA || tmpl == LLM_CHAT_TEMPLATE_VICUNA_ORCA) {
// eachadea/vicuna-13b-1.1 (and Orca variant)
for (auto message : chat) {
std::string role(message->role);
if (role == "system") {
// Orca-Vicuna variant uses a system prefix
if (tmpl == LLM_CHAT_TEMPLATE_VICUNA_ORCA) {
ss << "SYSTEM: " << message->content << "\n";
} else {
ss << message->content << "\n\n";
}
} else if (role == "user") {
ss << "USER: " << message->content << "\n";
} else if (role == "assistant") {
ss << "ASSISTANT: " << message->content << "</s>\n";
}
}
if (add_ass) {
ss << "ASSISTANT:";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_DEEPSEEK) {
// deepseek-ai/deepseek-coder-33b-instruct
for (auto message : chat) {
std::string role(message->role);
if (role == "system") {
ss << message->content;
} else if (role == "user") {
ss << "### Instruction:\n" << message->content << "\n";
} else if (role == "assistant") {
ss << "### Response:\n" << message->content << "\n<|EOT|>\n";
}
}
if (add_ass) {
ss << "### Response:\n";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_COMMAND_R) {
// CohereForAI/c4ai-command-r-plus
for (auto message : chat) {
std::string role(message->role);
if (role == "system") {
ss << "<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
} else if (role == "user") {
ss << "<|START_OF_TURN_TOKEN|><|USER_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
} else if (role == "assistant") {
ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
}
}
if (add_ass) {
ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_LLAMA_3) {
// Llama 3
for (auto message : chat) {
std::string role(message->role);
ss << "<|start_header_id|>" << role << "<|end_header_id|>\n\n" << trim(message->content) << "<|eot_id|>";
}
if (add_ass) {
ss << "<|start_header_id|>assistant<|end_header_id|>\n\n";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_CHATGML_3) {
// chatglm3-6b
ss << "[gMASK]" << "sop";
for (auto message : chat) {
std::string role(message->role);
ss << "<|" << role << "|>" << "\n " << message->content;
}
if (add_ass) {
ss << "<|assistant|>";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_CHATGML_4) {
ss << "[gMASK]" << "<sop>";
for (auto message : chat) {
std::string role(message->role);
ss << "<|" << role << "|>" << "\n" << message->content;
}
if (add_ass) {
ss << "<|assistant|>";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_MINICPM) {
// MiniCPM-3B-OpenHermes-2.5-v2-GGUF
for (auto message : chat) {
std::string role(message->role);
if (role == "user") {
ss << LU8("<用户>");
ss << trim(message->content);
ss << "<AI>";
} else {
ss << trim(message->content);
}
}
} else if (tmpl == LLM_CHAT_TEMPLATE_DEEPSEEK_2) {
// DeepSeek-V2
for (auto message : chat) {
std::string role(message->role);
if (role == "system") {
ss << message->content << "\n\n";
} else if (role == "user") {
ss << "User: " << message->content << "\n\n";
} else if (role == "assistant") {
ss << "Assistant: " << message->content << LU8("<|end▁of▁sentence|>");
}
}
if (add_ass) {
ss << "Assistant:";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_DEEPSEEK_3) {
// DeepSeek-V3
for (auto message : chat) {
std::string role(message->role);
if (role == "system") {
ss << message->content << "\n\n";
} else if (role == "user") {
ss << LU8("<|User|>") << message->content;
} else if (role == "assistant") {
ss << LU8("<|Assistant|>") << message->content << LU8("<|end▁of▁sentence|>");
}
}
if (add_ass) {
ss << LU8("<|Assistant|>");
}
} else if (tmpl == LLM_CHAT_TEMPLATE_EXAONE_3) {
// ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct/discussions/8#66bae61b1893d14ee8ed85bb
// EXAONE-3.0-7.8B-Instruct
for (auto message : chat) {
std::string role(message->role);
if (role == "system") {
ss << "[|system|]" << trim(message->content) << "[|endofturn|]\n";
} else if (role == "user") {
ss << "[|user|]" << trim(message->content) << "\n";
} else if (role == "assistant") {
ss << "[|assistant|]" << trim(message->content) << "[|endofturn|]\n";
}
}
if (add_ass) {
ss << "[|assistant|]";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_RWKV_WORLD) {
// this template requires the model to have "\n\n" as EOT token
for (auto message : chat) {
std::string role(message->role);
if (role == "user") {
ss << "User: " << message->content << "\n\nAssistant:";
} else {
ss << message->content << "\n\n";
}
}
} else if (tmpl == LLM_CHAT_TEMPLATE_GRANITE) {
// IBM Granite template
for (const auto & message : chat) {
std::string role(message->role);
ss << "<|start_of_role|>" << role << "<|end_of_role|>";
if (role == "assistant_tool_call") {
ss << "<|tool_call|>";
}
ss << message->content << "<|end_of_text|>\n";
}
if (add_ass) {
ss << "<|start_of_role|>assistant<|end_of_role|>\n";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_GIGACHAT) {
// GigaChat template
bool has_system = !chat.empty() && std::string(chat[0]->role) == "system";
// Handle system message if present
if (has_system) {
ss << "<s>" << chat[0]->content << "<|message_sep|>";
} else {
ss << "<s>";
}
// Process remaining messages
for (size_t i = has_system ? 1 : 0; i < chat.size(); i++) {
std::string role(chat[i]->role);
if (role == "user") {
ss << "user<|role_sep|>" << chat[i]->content << "<|message_sep|>"
<< "available functions<|role_sep|>[]<|message_sep|>";
} else if (role == "assistant") {
ss << "assistant<|role_sep|>" << chat[i]->content << "<|message_sep|>";
}
}
// Add generation prompt if needed
if (add_ass) {
ss << "assistant<|role_sep|>";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_MEGREZ) {
// Megrez template
for (auto message : chat) {
std::string role(message->role);
ss << "<|role_start|>" << role << "<|role_end|>" << message->content << "<|turn_end|>";
}
if (add_ass) {
ss << "<|role_start|>assistant<|role_end|>";
}
} else {
// template not supported
return -1;
}
dest = ss.str();
return dest.size();
}
llm_chat_template llm_chat_detect_template(const std::string & tmpl) {
try {
return llm_chat_template_from_str(tmpl);
} catch (const std::out_of_range &) {
// ignore
}
auto tmpl_contains = [&tmpl](const char * haystack) -> bool {
return tmpl.find(haystack) != std::string::npos;
};
if (tmpl_contains("<|im_start|>")) {
return tmpl_contains("<|im_sep|>")
? LLM_CHAT_TEMPLATE_PHI_4
: LLM_CHAT_TEMPLATE_CHATML;
} else if (tmpl.find("mistral") == 0 || tmpl_contains("[INST]")) {
if (tmpl_contains("[SYSTEM_PROMPT]")) {
return LLM_CHAT_TEMPLATE_MISTRAL_V7;
} else if (
// catches official 'v1' template
tmpl_contains("' [INST] ' + system_message")
// catches official 'v3' and 'v3-tekken' templates
|| tmpl_contains("[AVAILABLE_TOOLS]")
) {
// Official mistral 'v1', 'v3' and 'v3-tekken' templates
// See: https://github.com/mistralai/cookbook/blob/main/concept-deep-dive/tokenization/chat_templates.md
// See: https://github.com/mistralai/cookbook/blob/main/concept-deep-dive/tokenization/templates.md
if (tmpl_contains(" [INST]")) {
return LLM_CHAT_TEMPLATE_MISTRAL_V1;
} else if (tmpl_contains("\"[INST]\"")) {
return LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN;
}
return LLM_CHAT_TEMPLATE_MISTRAL_V3;
} else {
// llama2 template and its variants
// [variant] support system message
// See: https://huggingface.co/blog/llama2#how-to-prompt-llama-2
bool support_system_message = tmpl_contains("<<SYS>>");
bool add_bos_inside_history = tmpl_contains("bos_token + '[INST]");
bool strip_message = tmpl_contains("content.strip()");
if (strip_message) {
return LLM_CHAT_TEMPLATE_LLAMA_2_SYS_STRIP;
} else if (add_bos_inside_history) {
return LLM_CHAT_TEMPLATE_LLAMA_2_SYS_BOS;
} else if (support_system_message) {
return LLM_CHAT_TEMPLATE_LLAMA_2_SYS;
} else {
return LLM_CHAT_TEMPLATE_LLAMA_2;
}
}
} else if (tmpl_contains("<|assistant|>") && tmpl_contains("<|end|>")) {
return LLM_CHAT_TEMPLATE_PHI_3;
} else if (tmpl_contains("<|assistant|>") && tmpl_contains("<|user|>")) {
return LLM_CHAT_TEMPLATE_FALCON_3;
} else if (tmpl_contains("<|user|>") && tmpl_contains("<|endoftext|>")) {
return LLM_CHAT_TEMPLATE_ZEPHYR;
} else if (tmpl_contains("bos_token + message['role']")) {
return LLM_CHAT_TEMPLATE_MONARCH;
} else if (tmpl_contains("<start_of_turn>")) {
return LLM_CHAT_TEMPLATE_GEMMA;
} else if (tmpl_contains("'\\n\\nAssistant: ' + eos_token")) {
// OrionStarAI/Orion-14B-Chat
return LLM_CHAT_TEMPLATE_ORION;
} else if (tmpl_contains("GPT4 Correct ")) {
// openchat/openchat-3.5-0106
return LLM_CHAT_TEMPLATE_OPENCHAT;
} else if (tmpl_contains("USER: ") && tmpl_contains("ASSISTANT: ")) {
// eachadea/vicuna-13b-1.1 (and Orca variant)
if (tmpl_contains("SYSTEM: ")) {
return LLM_CHAT_TEMPLATE_VICUNA_ORCA;
}
return LLM_CHAT_TEMPLATE_VICUNA;
} else if (tmpl_contains("### Instruction:") && tmpl_contains("<|EOT|>")) {
// deepseek-ai/deepseek-coder-33b-instruct
return LLM_CHAT_TEMPLATE_DEEPSEEK;
} else if (tmpl_contains("<|START_OF_TURN_TOKEN|>") && tmpl_contains("<|USER_TOKEN|>")) {
// CohereForAI/c4ai-command-r-plus
return LLM_CHAT_TEMPLATE_COMMAND_R;
} else if (tmpl_contains("<|start_header_id|>") && tmpl_contains("<|end_header_id|>")) {
return LLM_CHAT_TEMPLATE_LLAMA_3;
} else if (tmpl_contains("[gMASK]sop")) {
// chatglm3-6b
return LLM_CHAT_TEMPLATE_CHATGML_3;
} else if (tmpl_contains("[gMASK]<sop>")) {
return LLM_CHAT_TEMPLATE_CHATGML_4;
} else if (tmpl_contains(LU8("<用户>"))) {
// MiniCPM-3B-OpenHermes-2.5-v2-GGUF
return LLM_CHAT_TEMPLATE_MINICPM;
} else if (tmpl_contains("'Assistant: ' + message['content'] + eos_token")) {
return LLM_CHAT_TEMPLATE_DEEPSEEK_2;
} else if (tmpl_contains(LU8("<|Assistant|>")) && tmpl_contains(LU8("<|User|>")) && tmpl_contains(LU8("<|end▁of▁sentence|>"))) {
return LLM_CHAT_TEMPLATE_DEEPSEEK_3;
} else if (tmpl_contains("[|system|]") && tmpl_contains("[|assistant|]") && tmpl_contains("[|endofturn|]")) {
// ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct/discussions/8#66bae61b1893d14ee8ed85bb
// EXAONE-3.0-7.8B-Instruct
return LLM_CHAT_TEMPLATE_EXAONE_3;
} else if (tmpl_contains("rwkv-world")) {
return LLM_CHAT_TEMPLATE_RWKV_WORLD;
} else if (tmpl_contains("<|start_of_role|>")) {
return LLM_CHAT_TEMPLATE_GRANITE;
} else if (tmpl_contains("message['role'] + additional_special_tokens[0] + message['content'] + additional_special_tokens[1]")) {
return LLM_CHAT_TEMPLATE_GIGACHAT;
} else if (tmpl_contains("<|role_start|>")) {
return LLM_CHAT_TEMPLATE_MEGREZ;
}
return LLM_CHAT_TEMPLATE_UNKNOWN;
}
References
[1] Yongqiang Cheng, https://yongqiang.blog.csdn.net/
[2] huggingface/gguf, https://github.com/huggingface/huggingface.js/tree/main/packages/gguf